Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39426378

RESUMEN

Endogenous condensates with transient constituents are notoriously difficult to study with common biological assays like mass spectrometry and other proteomics profiling. Here, we report a method for light-induced targeting of endogenous condensates (LiTEC) in living cells. LiTEC combines the identification of molecular zip codes that target the endogenous condensates with optogenetics to enable controlled and reversible partitioning of an arbitrary cargo, such as enzymes commonly used in proteomics, into the condensate in a blue light-dependent manner. We demonstrate a proof of concept by combining LiTEC with proximity-based biotinylation (BioID) and uncover putative components of transcriptional condensates in mouse embryonic stem cells. Our approach opens the road to genome-wide functional studies of endogenous condensates.

2.
Cell ; 187(7): 1701-1718.e28, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38503283

RESUMEN

Biomolecules incur damage during stress conditions, and damage partitioning represents a vital survival strategy for cells. Here, we identified a distinct stress granule (SG), marked by dsRNA helicase DHX9, which compartmentalizes ultraviolet (UV)-induced RNA, but not DNA, damage. Our FANCI technology revealed that DHX9 SGs are enriched in damaged intron RNA, in contrast to classical SGs that are composed of mature mRNA. UV exposure causes RNA crosslinking damage, impedes intron splicing and decay, and triggers DHX9 SGs within daughter cells. DHX9 SGs promote cell survival and induce dsRNA-related immune response and translation shutdown, differentiating them from classical SGs that assemble downstream of translation arrest. DHX9 modulates dsRNA abundance in the DHX9 SGs and promotes cell viability. Autophagy receptor p62 is activated and important for DHX9 SG disassembly. Our findings establish non-canonical DHX9 SGs as a dedicated non-membrane-bound cytoplasmic compartment that safeguards daughter cells from parental RNA damage.


Asunto(s)
ARN , Gránulos de Estrés , Citoplasma , ARN Mensajero/genética , Estrés Fisiológico , Humanos , Células HeLa
3.
Cell ; 187(19): 5316-5335.e28, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39096902

RESUMEN

Neutrophils are sentinel immune cells with essential roles for antimicrobial defense. Most of our knowledge on neutrophil tissue navigation derived from wounding and infection models, whereas allergic conditions remained largely neglected. Here, we analyzed allergen-challenged mouse tissues and discovered that degranulating mast cells (MCs) trap living neutrophils inside them. MCs release the attractant leukotriene B4 to re-route neutrophils toward them, thus exploiting a chemotactic system that neutrophils normally use for intercellular communication. After MC intracellular trap (MIT) formation, neutrophils die, but their undigested material remains inside MC vacuoles over days. MCs benefit from MIT formation, increasing their functional and metabolic fitness. Additionally, they are more pro-inflammatory and can exocytose active neutrophilic compounds with a time delay (nexocytosis), eliciting a type 1 interferon response in surrounding macrophages. Together, our study highlights neutrophil trapping and nexocytosis as MC-mediated processes, which may relay neutrophilic features over the course of chronic allergic inflammation.


Asunto(s)
Inflamación , Mastocitos , Ratones Endogámicos C57BL , Neutrófilos , Animales , Mastocitos/metabolismo , Mastocitos/inmunología , Neutrófilos/metabolismo , Neutrófilos/inmunología , Ratones , Inflamación/metabolismo , Inflamación/inmunología , Inflamación/patología , Leucotrieno B4/metabolismo , Transducción de Señal , Degranulación de la Célula , Macrófagos/metabolismo , Macrófagos/inmunología , Trampas Extracelulares/metabolismo , Masculino , Femenino
4.
Cell ; 184(16): 4186-4202.e20, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34216540

RESUMEN

Polyamine synthesis represents one of the most profound metabolic changes during T cell activation, but the biological implications of this are scarcely known. Here, we show that polyamine metabolism is a fundamental process governing the ability of CD4+ helper T cells (TH) to polarize into different functional fates. Deficiency in ornithine decarboxylase, a crucial enzyme for polyamine synthesis, results in a severe failure of CD4+ T cells to adopt correct subset specification, underscored by ectopic expression of multiple cytokines and lineage-defining transcription factors across TH cell subsets. Polyamines control TH differentiation by providing substrates for deoxyhypusine synthase, which synthesizes the amino acid hypusine, and mice in which T cells are deficient for hypusine develop severe intestinal inflammatory disease. Polyamine-hypusine deficiency caused widespread epigenetic remodeling driven by alterations in histone acetylation and a re-wired tricarboxylic acid (TCA) cycle. Thus, polyamine metabolism is critical for maintaining the epigenome to focus TH cell subset fidelity.


Asunto(s)
Linaje de la Célula , Poliaminas/metabolismo , Linfocitos T Colaboradores-Inductores/citología , Linfocitos T Colaboradores-Inductores/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Linaje de la Célula/efectos de los fármacos , Polaridad Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Cromatina/metabolismo , Ciclo del Ácido Cítrico/efectos de los fármacos , Colitis/inmunología , Colitis/patología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Epigenoma , Histonas/metabolismo , Inflamación/inmunología , Inflamación/patología , Subgrupos Linfocitarios/efectos de los fármacos , Subgrupos Linfocitarios/metabolismo , Lisina/análogos & derivados , Lisina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ornitina Descarboxilasa/metabolismo , Linfocitos T Colaboradores-Inductores/efectos de los fármacos , Células Th17/efectos de los fármacos , Células Th17/inmunología , Factores de Transcripción/metabolismo
5.
Immunity ; 57(9): 2216-2231.e11, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39151426

RESUMEN

Microglia are the resident macrophages of the central nervous system (CNS). Their phagocytic activity is central during brain development and homeostasis-and in a plethora of brain pathologies. However, little is known about the composition, dynamics, and function of human microglial phagosomes under homeostatic and pathological conditions. Here, we developed a method for rapid isolation of pure and intact phagosomes from human pluripotent stem cell-derived microglia under various in vitro conditions, and from human brain biopsies, for unbiased multiomic analysis. Phagosome profiling revealed that microglial phagosomes were equipped to sense minute changes in their environment and were highly dynamic. We detected proteins involved in synapse homeostasis, or implicated in brain pathologies, and identified the phagosome as the site where quinolinic acid was stored and metabolized for de novo nicotinamide adenine dinucleotide (NAD+) generation in the cytoplasm. Our findings highlight the central role of phagosomes in microglial functioning in the healthy and diseased brain.


Asunto(s)
Microglía , Fagocitosis , Fagosomas , Humanos , Microglía/metabolismo , Fagosomas/metabolismo , Encéfalo/metabolismo , Encéfalo/citología , Células Cultivadas , Células Madre Pluripotentes/metabolismo , Proteómica/métodos
6.
Genes Dev ; 36(15-16): 901-915, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36167471

RESUMEN

Transcription factor EBF1 (early B cell factor 1) acts as a key regulator of B cell specification. The transcriptional network in which EBF1 operates has been extensively studied; however, the regulation of EBF1 function remains poorly defined. By mass spectrometric analysis of proteins associated with endogenous EBF1 in pro-B cells, we identified the nuclear import receptor Transportin-3 (Tnpo3) and found that it interacts with the immunoglobulin-like fold domain of EBF1. We delineated glutamic acid 271 of EBF1 as a critical residue for the association with Tnpo3. EBF1E271A showed normal nuclear localization; however, it had an impaired B cell programming ability in conditions of Notch signaling, as determined by retroviral transduction of Ebf1 -/- progenitors. By RNA-seq analysis of EBF1E271A-expressing progenitors, we found an up-regulation of T lineage determinants and down-regulation of early B genes, although similar chromatin binding of EBF1E271A and EBF1wt was detected in pro-B cells expressing activated Notch1. B lineage-specific inactivation of Tnpo3 in mice resulted in a block of early B cell differentiation, accompanied by a down-regulation of B lineage genes and up-regulation of T and NK lineage genes. Taken together, our observations suggest that Tnpo3 ensures B cell programming by EBF1 in nonpermissive conditions.


Asunto(s)
Ácido Glutámico , Transactivadores , beta Carioferinas , Animales , Ratones , beta Carioferinas/metabolismo , Linaje de la Célula/genética , Cromatina , Inmunoglobulinas/genética , Inmunoglobulinas/metabolismo , Carioferinas/genética , Receptores Notch/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo
7.
Immunity ; 53(6): 1151-1167.e6, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33159853

RESUMEN

Establishment of B-lineage-specific gene expression requires the binding of transcription factors to inaccessible chromatin of progenitors. The transcription factor EBF1 can bind genomic regions prior to the detection of chromatin accessibility in a manner dependent on EBF1's C-terminal domain (CTD) and independent of cooperating transcription factors. Here, we studied the mechanism whereby the CTD enables this pioneering function. The CTD of EBF1 was dispensable for initial chromatin targeting but stabilized occupancy via recruitment of the chromatin remodeler Brg1. We found that the CTD harbors a prion-like domain (PLD) with an ability of liquid-liquid phase separation, which was enhanced by interaction of EBF1 with the RNA-binding protein FUS. Brg1 also partitioned into phase-separated FUS condensates and coincided with EBF1 and FUS foci in pro-B cells. Heterologous PLDs conferred pioneering function on EBF1ΔCTD. Thus, the phase separation ability of EBF1 facilitates Brg1-mediated chromatin opening and the transition of naive progenitor chromatin to B-lineage-committed chromatin.


Asunto(s)
Linfocitos B/metabolismo , Cromatina/metabolismo , Priones/química , Transactivadores/metabolismo , Secuencia de Aminoácidos , Linfocitos B/citología , ADN Helicasas/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Transición de Fase , Células Precursoras de Linfocitos B/citología , Células Precursoras de Linfocitos B/metabolismo , Dominios Proteicos , Proteína FUS de Unión a ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Transactivadores/química , Factores de Transcripción/metabolismo
8.
EMBO J ; 43(13): 2685-2714, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38831123

RESUMEN

Constitutive heterochromatin is essential for transcriptional silencing and genome integrity. The establishment of constitutive heterochromatin in early embryos and its role in early fruitfly development are unknown. Lysine 9 trimethylation of histone H3 (H3K9me3) and recruitment of its epigenetic reader, heterochromatin protein 1a (HP1a), are hallmarks of constitutive heterochromatin. Here, we show that H3K9me3 is transmitted from the maternal germline to the next generation. Maternally inherited H3K9me3, and the histone methyltransferases (HMT) depositing it, are required for the organization of constitutive heterochromatin: early embryos lacking H3K9 methylation display de-condensation of pericentromeric regions, centromere-centromere de-clustering, mitotic defects, and nuclear shape irregularities, resulting in embryo lethality. Unexpectedly, quantitative CUT&Tag and 4D microscopy measurements of HP1a coupled with biophysical modeling revealed that H3K9me2/3 is largely dispensable for HP1a recruitment. Instead, the main function of H3K9me2/3 at this developmental stage is to drive HP1a clustering and subsequent heterochromatin compaction. Our results show that HP1a binding to constitutive heterochromatin in the absence of H3K9me2/3 is not sufficient to promote proper embryo development and heterochromatin formation. The loss of H3K9 HMTs and H3K9 methylation alters genome organization and hinders embryonic development.


Asunto(s)
Proteínas Cromosómicas no Histona , Heterocromatina , Histonas , Animales , Histonas/metabolismo , Histonas/genética , Heterocromatina/metabolismo , Heterocromatina/genética , Metilación , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Homólogo de la Proteína Chromobox 5 , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Embrión no Mamífero/metabolismo , Genoma de los Insectos , Desarrollo Embrionario/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética
9.
Cell ; 152(4): 859-72, 2013 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-23415232

RESUMEN

Histone modifications are key regulators of chromatin function. However, little is known to what extent histone modifications can directly impact on chromatin. Here, we address how a modification within the globular domain of histones regulates chromatin function. We demonstrate that H3K122ac can be sufficient to stimulate transcription and that mutation of H3K122 impairs transcriptional activation, which we attribute to a direct effect of H3K122ac on histone-DNA binding. In line with this, we find that H3K122ac defines genome-wide genetic elements and chromatin features associated with active transcription. Furthermore, H3K122ac is catalyzed by the coactivators p300/CBP and can be induced by nuclear hormone receptor signaling. Collectively, this suggests that transcriptional regulators elicit their effects not only via signaling to histone tails but also via direct structural perturbation of nucleosomes by directing acetylation to their lateral surface.


Asunto(s)
Regulación de la Expresión Génica , Código de Histonas , Histonas/metabolismo , Activación Transcripcional , Acetilación , Animales , Línea Celular Tumoral , Eucariontes/metabolismo , Fibroblastos/metabolismo , Humanos , Ratones , Modelos Moleculares , Nucleosomas/metabolismo , Receptores de Estrógenos/metabolismo , Schizosaccharomyces/metabolismo , Sitio de Iniciación de la Transcripción , Factores de Transcripción p300-CBP/metabolismo
10.
Nature ; 610(7932): 555-561, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36171294

RESUMEN

CD4+ T cell differentiation requires metabolic reprogramming to fulfil the bioenergetic demands of proliferation and effector function, and enforce specific transcriptional programmes1-3. Mitochondrial membrane dynamics sustains mitochondrial processes4, including respiration and tricarboxylic acid (TCA) cycle metabolism5, but whether mitochondrial membrane remodelling orchestrates CD4+ T cell differentiation remains unclear. Here we show that unlike other CD4+ T cell subsets, T helper 17 (TH17) cells have fused mitochondria with tight cristae. T cell-specific deletion of optic atrophy 1 (OPA1), which regulates inner mitochondrial membrane fusion and cristae morphology6, revealed that TH17 cells require OPA1 for its control of the TCA cycle, rather than respiration. OPA1 deletion amplifies glutamine oxidation, leading to impaired NADH/NAD+ balance and accumulation of TCA cycle metabolites and 2-hydroxyglutarate-a metabolite that influences the epigenetic landscape5,7. Our multi-omics approach revealed that the serine/threonine kinase liver-associated kinase B1 (LKB1) couples mitochondrial function to cytokine expression in TH17 cells by regulating TCA cycle metabolism and transcriptional remodelling. Mitochondrial membrane disruption activates LKB1, which restrains IL-17 expression. LKB1 deletion restores IL-17 expression in TH17 cells with disrupted mitochondrial membranes, rectifying aberrant TCA cycle glutamine flux, balancing NADH/NAD+ and preventing 2-hydroxyglutarate production from the promiscuous activity of the serine biosynthesis enzyme phosphoglycerate dehydrogenase (PHGDH). These findings identify OPA1 as a major determinant of TH17 cell function, and uncover LKB1 as a sensor linking mitochondrial cues to effector programmes in TH17 cells.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Mitocondrias , Células Th17 , Glutamina/metabolismo , Interleucina-17/metabolismo , Mitocondrias/metabolismo , NAD/metabolismo , Fosfoglicerato-Deshidrogenasa/metabolismo , Serina/biosíntesis , Serina/metabolismo , Células Th17/citología , Células Th17/inmunología , Células Th17/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Ciclo del Ácido Cítrico , GTP Fosfohidrolasas/deficiencia , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo
11.
Mol Cell ; 80(1): 156-163.e6, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33007255

RESUMEN

The production of alternative RNA variants contributes to the tissue-specific regulation of gene expression. In the animal nervous system, a systematic shift toward distal sites of transcription termination produces transcript signatures that are crucial for neuron development and function. Here, we report that, in Drosophila, the highly conserved protein ELAV globally regulates all sites of neuronal 3' end processing and directly binds to proximal polyadenylation sites of target mRNAs in vivo. We uncover an endogenous strategy of functional gene rescue that safeguards neuronal RNA signatures in an ELAV loss-of-function context. When not directly repressed by ELAV, the transcript encoding the ELAV paralog FNE acquires a mini-exon, generating a new protein able to translocate to the nucleus and rescue ELAV-mediated alternative polyadenylation and alternative splicing. We propose that exon-activated functional rescue is a more widespread mechanism that ensures robustness of processes regulated by a hierarchy, rather than redundancy, of effectors.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Proteínas ELAV/metabolismo , Exones/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Masculino , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcriptoma/genética
12.
Immunity ; 49(6): 1021-1033.e6, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30566880

RESUMEN

Metabolic engagement is intrinsic to immune cell function. Prostaglandin E2 (PGE2) has been shown to modulate macrophage activation, yet how PGE2 might affect metabolism is unclear. Here, we show that PGE2 caused mitochondrial membrane potential (Δψm) to dissipate in interleukin-4-activated (M(IL-4)) macrophages. Effects on Δψm were a consequence of PGE2-initiated transcriptional regulation of genes, particularly Got1, in the malate-aspartate shuttle (MAS). Reduced Δψm caused alterations in the expression of 126 voltage-regulated genes (VRGs), including those encoding resistin-like molecule α (RELMα), a key marker of M(IL-4) cells, and genes that regulate the cell cycle. The transcription factor ETS variant 1 (ETV1) played a role in the regulation of 38% of the VRGs. These results reveal ETV1 as a Δψm-sensitive transcription factor and Δψm as a mediator of mitochondrial-directed nuclear gene expression.


Asunto(s)
Núcleo Celular/efectos de los fármacos , Dinoprostona/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Macrófagos/efectos de los fármacos , Potencial de la Membrana Mitocondrial/fisiología , Animales , Núcleo Celular/genética , Células Cultivadas , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Perfilación de la Expresión Génica , Células HEK293 , Humanos , Interleucina-4/farmacología , Activación de Macrófagos/efectos de los fármacos , Activación de Macrófagos/genética , Macrófagos/metabolismo , Macrófagos/ultraestructura , Ratones , Ratones Endogámicos C57BL , Células 3T3 NIH , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
Cell ; 150(5): 948-60, 2012 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-22939622

RESUMEN

Heterochromatin serves important functions, protecting genome integrity and stabilizing gene expression programs. Although the Suv39h methyltransferases (KMTs) are known to ensure pericentric H3K9me3 methylation, the mechanisms that initiate and maintain mammalian heterochromatin organization remain elusive. We developed a biochemical assay and used in vivo analyses in mouse embryonic fibroblasts to identify Prdm3 and Prdm16 as redundant H3K9me1-specific KMTs that direct cytoplasmic H3K9me1 methylation. The H3K9me1 is converted in the nucleus to H3K9me3 by the Suv39h enzymes to reinforce heterochromatin. Simultaneous depletion of Prdm3 and Prdm16 abrogates H3K9me1 methylation, prevents Suv39h-dependent H3K9me3 trimethylation, and derepresses major satellite transcription. Most strikingly, DNA-FISH and electron microscopy reveal that combined impairment of Prdm3 and Prdm16 results in disintegration of heterochromatic foci and disruption of the nuclear lamina. Our data identify Prdm3 and Prdm16 as H3K9me1 methyltransferases and expose a functional framework in which anchoring to the nuclear periphery helps maintain the integrity of mammalian heterochromatin.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Heterocromatina , N-Metiltransferasa de Histona-Lisina/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas de Unión al ADN/genética , Fibroblastos/metabolismo , Técnicas de Inactivación de Genes , Células HeLa , N-Metiltransferasa de Histona-Lisina/genética , Histonas/metabolismo , Humanos , Proteína del Locus del Complejo MDS1 y EV11 , Ratones , Lámina Nuclear/metabolismo , Proto-Oncogenes , Factores de Transcripción/genética
14.
Nature ; 591(7850): 471-476, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33627869

RESUMEN

The behaviour of Dictyostelium discoideum depends on nutrients1. When sufficient food is present these amoebae exist in a unicellular state, but upon starvation they aggregate into a multicellular organism2,3. This biology makes D. discoideum an ideal model for investigating how fundamental metabolism commands cell differentiation and function. Here we show that reactive oxygen species-generated as a consequence of nutrient limitation-lead to the sequestration of cysteine in the antioxidant glutathione. This sequestration limits the use of the sulfur atom of cysteine in processes that contribute to mitochondrial metabolism and cellular proliferation, such as protein translation and the activity of enzymes that contain an iron-sulfur cluster. The regulated sequestration of sulfur maintains D. discoideum in a nonproliferating state that paves the way for multicellular development. This mechanism of signalling through reactive oxygen species highlights oxygen and sulfur as simple signalling molecules that dictate cell fate in an early eukaryote, with implications for responses to nutrient fluctuations in multicellular eukaryotes.


Asunto(s)
Dictyostelium/citología , Dictyostelium/metabolismo , Privación de Alimentos/fisiología , Nutrientes/metabolismo , Azufre/metabolismo , Aminoácidos Esenciales/metabolismo , Aminoácidos Esenciales/farmacología , Antioxidantes/metabolismo , Agregación Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Respiración de la Célula/efectos de los fármacos , Cisteína/química , Cisteína/metabolismo , Cisteína/farmacología , Dictyostelium/efectos de los fármacos , Glutatión/química , Glutatión/metabolismo , Glutatión/farmacología , Proteínas Hierro-Azufre/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Oxígeno/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
15.
Genes Dev ; 30(20): 2310-2324, 2016 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-27807034

RESUMEN

Transcription factor EBF1 (early B-cell factor 1) regulates early B-cell differentiation by poising or activating lineage-specific genes and repressing genes associated with alternative cell fates. To identify proteins that regulate the diverse functions of EBF1, we used SILAC (stable isotope labeling by amino acids in cell culture)-based mass spectrometry of proteins associated with endogenous EBF1 in pro-B cells. This analysis identified most components of the multifunctional CCR4-NOT complex, which regulates transcription and mRNA degradation. CNOT3 interacts with EBF1, and we identified histidine 240 in EBF1 as a critical residue for this interaction. Complementation of Ebf1-/- progenitors with EBF1H240A revealed a partial block of pro-B-cell differentiation and altered expression of specific EBF1 target genes that show either reduced transcription or increased mRNA stability. Most deregulated EBF1 target genes show normal occupancy by EBF1H240A, but we also detected genes with altered occupancy, suggesting that the CCR4-NOT complex affects multiple activities of EBF1. Mice with conditional Cnot3 inactivation recapitulate the block of early B-cell differentiation, which we found to be associated with an impaired autoregulation of Ebf1 and reduced expression of pre-B-cell receptor components. Thus, the interaction of the CCR4-NOT complex with EBF1 diversifies the function of EBF1 in a context-dependent manner and may coordinate transcriptional and post-transcriptional gene regulation.


Asunto(s)
Linfocitos B/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica/genética , Proteínas de Homeodominio/metabolismo , Linfopoyesis/genética , Proteínas Nucleares/metabolismo , Estabilidad del ARN/genética , Factores de Transcripción/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular/genética , Silenciador del Gen , Células HEK293 , Proteínas de Homeodominio/genética , Humanos , Ratones , Chaperonas Moleculares/genética , Mutación , Proteínas Nucleares/genética , Unión Proteica , Factores de Transcripción/genética , Transgenes
16.
Nature ; 544(7648): 115-119, 2017 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-28355180

RESUMEN

Transposable elements are viewed as 'selfish genetic elements', yet they contribute to gene regulation and genome evolution in diverse ways. More than half of the human genome consists of transposable elements. Alu elements belong to the short interspersed nuclear element (SINE) family of repetitive elements, and with over 1 million insertions they make up more than 10% of the human genome. Despite their abundance and the potential evolutionary advantages they confer, Alu elements can be mutagenic to the host as they can act as splice acceptors, inhibit translation of mRNAs and cause genomic instability. Alu elements are the main targets of the RNA-editing enzyme ADAR and the formation of Alu exons is suppressed by the nuclear ribonucleoprotein HNRNPC, but the broad effect of massive secondary structures formed by inverted-repeat Alu elements on RNA processing in the nucleus remains unknown. Here we show that DHX9, an abundant nuclear RNA helicase, binds specifically to inverted-repeat Alu elements that are transcribed as parts of genes. Loss of DHX9 leads to an increase in the number of circular-RNA-producing genes and amount of circular RNAs, translational repression of reporters containing inverted-repeat Alu elements, and transcriptional rewiring (the creation of mostly nonsensical novel connections between exons) of susceptible loci. Biochemical purifications of DHX9 identify the interferon-inducible isoform of ADAR (p150), but not the constitutively expressed ADAR isoform (p110), as an RNA-independent interaction partner. Co-depletion of ADAR and DHX9 augments the double-stranded RNA accumulation defects, leading to increased circular RNA production, revealing a functional link between these two enzymes. Our work uncovers an evolutionarily conserved function of DHX9. We propose that it acts as a nuclear RNA resolvase that neutralizes the immediate threat posed by transposon insertions and allows these elements to evolve as tools for the post-transcriptional regulation of gene expression.


Asunto(s)
Elementos Alu/genética , ARN Helicasas DEAD-box/metabolismo , Genoma Humano/genética , Secuencias Invertidas Repetidas/genética , Proteínas de Neoplasias/metabolismo , Edición de ARN/genética , ARN/genética , ARN/metabolismo , Adenosina Desaminasa/química , Adenosina Desaminasa/deficiencia , Adenosina Desaminasa/genética , Adenosina Desaminasa/aislamiento & purificación , Adenosina Desaminasa/metabolismo , Animales , Línea Celular , ARN Helicasas DEAD-box/deficiencia , ARN Helicasas DEAD-box/genética , Evolución Molecular , Exones/genética , Regulación de la Expresión Génica , Genes Reporteros/genética , Células HEK293 , Humanos , Masculino , Ratones , Mutagénesis/genética , Proteínas de Neoplasias/deficiencia , Proteínas de Neoplasias/genética , Conformación de Ácido Nucleico , Unión Proteica , Biosíntesis de Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/aislamiento & purificación , Isoformas de Proteínas/metabolismo , ARN/biosíntesis , ARN/química , ARN Circular , ARN Bicatenario/química , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/aislamiento & purificación , Proteínas de Unión al ARN/metabolismo , Transcripción Genética
17.
Nucleic Acids Res ; 49(10): 5568-5587, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-33999208

RESUMEN

Heterochromatin has essential functions in maintaining chromosome structure, in protecting genome integrity and in stabilizing gene expression programs. Heterochromatin is often nucleated by underlying DNA repeat sequences, such as major satellite repeats (MSR) and long interspersed nuclear elements (LINE). In order to establish heterochromatin, MSR and LINE elements need to be transcriptionally competent and generate non-coding repeat RNA that remain chromatin associated. We explored whether these heterochromatic RNA, similar to DNA and histones, may be methylated, particularly for 5-methylcytosine (5mC) or methyl-6-adenosine (m6A). Our analysis in mouse ES cells identifies only background level of 5mC but significant enrichment for m6A on heterochromatic RNA. Moreover, MSR transcripts are a novel target for m6A RNA modification, and their m6A RNA enrichment is decreased in ES cells that are mutant for Mettl3 or Mettl14, which encode components of a central RNA methyltransferase complex. Importantly, MSR transcripts that are partially deficient in m6A RNA methylation display impaired chromatin association and have a reduced potential to form RNA:DNA hybrids. We propose that m6A modification of MSR RNA will enhance the functions of MSR repeat transcripts to stabilize mouse heterochromatin.


Asunto(s)
ADN/metabolismo , Heterocromatina , ARN/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Animales , Metilación , Ratones , Células Madre Embrionarias de Ratones , Secuencias Repetidas en Tándem
18.
PLoS Biol ; 16(5): e2004526, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29813070

RESUMEN

Gene expression in eukaryotes is controlled by DNA sequences at promoter and enhancer regions, whose accessibility for binding by regulatory proteins dictates their specific patterns of activity. Here, we identify the protein Zbtb7a as a factor required for inducible changes in accessibility driven by transcription factors (TFs). We show that Zbtb7a binds to a significant fraction of genomic promoters and enhancers, encompassing many target genes of nuclear factor kappa B (NFκB) p65 and a variety of other TFs. While Zbtb7a binding is not alone sufficient to directly activate promoters, it is required to enable TF-dependent control of accessibility and normal gene expression. Using p65 as a model TF, we show that Zbtb7a associates with promoters independently of client TF binding. Moreover, the presence of prebound Zbtb7a can specify promoters that are amenable to TF-induced changes in accessibility. Therefore, Zbtb7a represents a widely used promoter factor that transduces signals from other TFs to enable control of accessibility and regulation of gene expression.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Regiones Promotoras Genéticas , Factor de Transcripción ReIA/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional , Células 3T3 , Animales , Sitios de Unión , Elementos de Facilitación Genéticos , Marcaje Isotópico , Ratones , Ratones Noqueados
19.
Mol Cell ; 50(5): 625-36, 2013 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-23644018

RESUMEN

Posttranslational modification with the small ubiquitin-related modifier SUMO depends on the sequential activities of E1, E2, and E3 enzymes. While regulation by E3 ligases and SUMO proteases is well understood, current knowledge of E2 regulation is very limited. Here, we describe modification of the budding yeast E2 enzyme Ubc9 by sumoylation (Ubc9(*)SUMO). Although less than 1% of Ubc9 is sumoylated at Lys153 at steady state, a sumoylation-deficient mutant showed significantly reduced meiotic SUMO conjugates and abrogates synaptonemal complex formation. Biochemical analysis revealed that Ubc9(*)SUMO is severely impaired in its classical activity but promoted SUMO chain assembly in the presence of Ubc9. Ubc9(*)SUMO cooperates with charged Ubc9 (Ubc9~SUMO) by noncovalent backside SUMO binding and by positioning the donor SUMO for optimal transfer. Thus, sumoylation of Ubc9 converts an active enzyme into a cofactor and reveals a mechanism for E2 regulation that orchestrates catalytic (Ubc9~SUMO) and noncatalytic (Ubc9(*)SUMO) functions of Ubc9.


Asunto(s)
Saccharomyces cerevisiae/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Lisina/metabolismo , Meiosis , Mutación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Sumoilación , Complejo Sinaptonémico/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética
20.
Nucleic Acids Res ; 46(16): 8197-8215, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-29986055

RESUMEN

A fundamental as yet incompletely understood feature of Notch signal transduction is a transcriptional shift from repression to activation that depends on chromatin regulation mediated by transcription factor RBP-J and associated cofactors. Incorporation of histone variants alter the functional properties of chromatin and are implicated in the regulation of gene expression. Here, we show that depletion of histone variant H2A.Z leads to upregulation of canonical Notch target genes and that the H2A.Z-chaperone TRRAP/p400/Tip60 complex physically associates with RBP-J at Notch-dependent enhancers. When targeted to RBP-J-bound enhancers, the acetyltransferase Tip60 acetylates H2A.Z and upregulates Notch target gene expression. Importantly, the Drosophila homologs of Tip60, p400 and H2A.Z modulate Notch signaling response and growth in vivo. Together, our data reveal that loading and acetylation of H2A.Z are required to assure tight control of canonical Notch activation.


Asunto(s)
Regulación de la Expresión Génica , Histonas/genética , Receptores Notch/genética , Transducción de Señal/genética , Acetilación , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Células HEK293 , Células HeLa , Histonas/metabolismo , Humanos , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Lisina Acetiltransferasa 5/genética , Lisina Acetiltransferasa 5/metabolismo , Ratones Noqueados , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Receptores Notch/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA