RESUMEN
Zika virus (ZIKV) can be transmitted vertically from mother to fetus during pregnancy, resulting in a range of outcomes including severe birth defects and fetal/infant death. Potential pathways of vertical transmission in utero have been proposed but remain undefined. Identifying the timing and routes of vertical transmission of ZIKV may help us identify when interventions would be most effective. Furthermore, understanding what barriers ZIKV overcomes to effect vertical transmission may help improve models for evaluating infection by other pathogens during pregnancy. To determine the pathways of vertical transmission, we inoculated 12 pregnant rhesus macaques with an African-lineage ZIKV at gestational day 30 (term is 165 days). Eight pregnancies were surgically terminated at either seven or 14 days post-maternal infection. Maternal-fetal interface and fetal tissues and fluids were collected and evaluated for ZIKV using RT-qPCR, in situ hybridization, immunohistochemistry, and plaque assays. Four additional pregnant macaques were inoculated and terminally perfused with 4% paraformaldehyde at three, six, nine, or ten days post-maternal inoculation. For these four cases, the entire fixed pregnant uterus was evaluated with in situ hybridization for ZIKV RNA. We determined that ZIKV can reach the MFI by six days after infection and infect the fetus by ten days. Infection of the chorionic membrane and the extraembryonic coelomic fluid preceded infection of the fetus and the mesenchymal tissue of the placental villi. We did not find evidence to support a transplacental route of ZIKV vertical transmission via infection of syncytiotrophoblasts or villous cytotrophoblasts. The pattern of infection observed in the maternal-fetal interface provides evidence of paraplacental vertical ZIKV transmission through the chorionic membrane, the outer layer of the fetal membranes.
Asunto(s)
Complicaciones Infecciosas del Embarazo , Infección por el Virus Zika , Virus Zika , Humanos , Animales , Embarazo , Femenino , Virus Zika/genética , Macaca mulatta , Placenta , Complicaciones Infecciosas del Embarazo/metabolismo , Muerte Fetal , Transmisión Vertical de Enfermedad Infecciosa , Membranas Extraembrionarias/metabolismoRESUMEN
Following the Zika virus (ZIKV) outbreak in the Americas, ZIKV was causally associated with microcephaly and a range of neurological and developmental symptoms, termed congenital Zika syndrome (CZS). The viruses responsible for this outbreak belonged to the Asian lineage of ZIKV. However, in vitro and in vivo studies assessing the pathogenesis of African-lineage ZIKV demonstrated that African-lineage isolates often replicated to high titers and caused more-severe pathology than Asian-lineage isolates. To date, the pathogenesis of African-lineage ZIKV in a translational model, particularly during pregnancy, has not been rigorously characterized. Here, we infected four pregnant rhesus macaques with a low-passage-number strain of African-lineage ZIKV and compared its pathogenesis to those for a cohort of four pregnant rhesus macaques infected with an Asian-lineage isolate and a cohort of mock-inoculated controls. The viral replication kinetics for the two experimental groups were not significantly different, and both groups developed robust neutralizing antibody titers above levels considered to be protective. There was no evidence of significant fetal head growth restriction or gross fetal harm at delivery (1 to 1.5 weeks prior to full term) in either group. However, a significantly higher burden of ZIKV viral RNA (vRNA) was found in the maternal-fetal interface tissues of the macaques exposed to an African-lineage isolate. Our findings suggest that ZIKV of any genetic lineage poses a threat to pregnant individuals and their infants. IMPORTANCE ZIKV was first identified in 1947 in Africa, but most of our knowledge of ZIKV is based on studies of the distinct Asian genetic lineage, which caused the outbreak in the Americas in 2015 to 2016. In its most recent update, the WHO stated that improved understanding of African-lineage ZIKV pathogenesis during pregnancy must be a priority. The recent detection of African-lineage isolates in Brazil underscores the need to understand the impact of these viruses. Here, we provide the first comprehensive assessment of African-lineage ZIKV infection during pregnancy in a translational nonhuman primate model. We show that African-lineage isolates replicate with kinetics similar to those of Asian-lineage isolates and can infect the placenta. However, there was no evidence of more-severe outcomes with African-lineage isolates. Our results highlight both the threat that African-lineage ZIKV poses to pregnant individuals and their infants and the need for epidemiological and translational in vivo studies with African-lineage ZIKV.
Asunto(s)
Placenta/virología , Complicaciones Infecciosas del Embarazo/virología , Replicación Viral , Infección por el Virus Zika/virología , Virus Zika/fisiología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Modelos Animales de Enfermedad , Femenino , Desarrollo Fetal , Cinética , Macaca mulatta , Placenta/patología , Embarazo , Virus Zika/clasificación , Virus Zika/inmunologíaRESUMEN
Chronic intermittent hypoxia (CIH) increases basal sympathetic nervous system activity, augments chemoreflex-induced sympathoexcitation, and raises blood pressure. All effects are attenuated by systemic or intracerebroventricular administration of angiotensin II type 1 receptor (AT1R) antagonists. This study aimed to quantify the effects of CIH on AT1R- and AT2R-like immunoreactivity in the rostroventrolateral medulla (RVLM) and paraventricular nucleus of the hypothalamus (PVN), central regions that are important components of the extended chemoreflex pathway. Eighteen Sprague-Dawley rats were exposed to intermittent hypoxia (FIO2 = 0.10, 1 min at 4-min intervals) for 10 hr/day for 1, 5, 10, or 21 days. After exposure, rats were deeply anesthetized and transcardially perfused with phosphate buffered saline (PBS) followed by 4% paraformaldehyde in PBS. Brains were removed and sectioned coronally into 50 µm slices. Immunohistochemistry was used to quantify AT1R and AT2R in the RVLM and the PVN. In the RVLM, CIH significantly increased the AT1R-like immunoreactivity, but did not alter AT2R immunoreactivity, thereby augmenting the AT1R:AT2R ratio in this nucleus. In the PVN, CIH had no effect on immunoreactivity of either receptor subtype. The current findings provide mechanistic insight into increased basal sympathetic outflow, enhanced chemoreflex sensitivity, and blood pressure elevation observed in rodents exposed to CIH.
RESUMEN
Zika virus (ZIKV) can be vertically transmitted during pregnancy resulting in a range of adverse pregnancy outcomes. The decidua is commonly found to be infected by ZIKV, yet the acute immune response to infection remains understudied in vivo. We hypothesized that in vivo African-lineage ZIKV infection induces a pro-inflammatory response in the decidua. To test this hypothesis, we evaluated the decidua in pregnant rhesus macaques within the first two weeks following infection with an African-lineage ZIKV and compared our findings to gestationally aged-matched controls. Decidual leukocytes were phenotypically evaluated using spectral flow cytometry, and cytokines and chemokines were measured in tissue homogenates from the decidua, placenta, and fetal membranes. The results of this study did not support our hypothesis. Although ZIKV RNA was detected in the decidual tissue samples from all ZIKV infected dams, phenotypic changes in decidual leukocytes and differences in cytokine profiles suggest that the decidua undergoes mild anti-inflammatory changes in response to that infection. Our findings emphasize the immunological state of the gravid uterus as a relatively immune privileged site that prioritizes tolerance of the fetus over mounting a pro-inflammatory response to clear infection.
Asunto(s)
Complicaciones Infecciosas del Embarazo , Infección por el Virus Zika , Virus Zika , Embarazo , Humanos , Femenino , Animales , Macaca mulatta , LeucocitosRESUMEN
Infection with clade I Mpox virus (MPXV) results in adverse pregnancy outcomes, yet the potential for vertical transmission resulting in fetal harm with clade IIb MPXV, the clade that is currently circulating in the Western Hemisphere, remains unknown. We established a rhesus macaque model of vertical MPXV transmission with early gestation inoculation. Three pregnant rhesus macaques were inoculated intradermally with 1.5 × 10^5 plaque forming units (PFU) of clade IIb MPXV near gestational day (GD) 30 and animals were monitored for viremia and maternal and fetal well-being. Animals were euthanized to collect tissues at 5, 14, or 25 days post-inoculation (dpi). Tissues were evaluated for viral DNA (vDNA) loads, infectious virus titers, histopathology, MPXV mRNA and protein localization, as well as MPXV protein co-localization with placental cells including, Hofbauer cells, mesenchymal stromal cells, endothelial cells, and trophoblasts. vDNA was detected in maternal blood and skin lesions by 5 dpi. Lack of fetal heartbeat was observed at 14 or 25 dpi for two dams indicating fetal demise; the third dam developed significant vaginal bleeding at 5 dpi and was deemed an impending miscarriage. vDNA was detected in placental and fetal tissue in both fetal demise cases. MPXV localized to placental villi by ISH and IHC. Clade IIb MPXV infection in pregnant rhesus macaques results in vertical transmission to the fetus and adverse pregnancy outcomes, like clade I MPXV. Further studies are needed to determine whether antiviral therapy with tecovirimat will prevent vertical transmission and improve pregnancy outcomes. One Sentence Summary: Clade IIb Mpox virus infection of pregnant rhesus macaques results in vertical transmission from mother to fetus and adverse pregnancy outcomes.
RESUMEN
BACKGROUND: Congenital Zika virus (ZIKV) infection can result in birth defects, including malformations in the fetal brain and visual system. There are two distinct genetic lineages of ZIKV: African and Asian. Asian-lineage ZIKVs have been associated with adverse pregnancy outcomes in humans; however, recent evidence from experimental models suggests that African-lineage viruses can also be vertically transmitted and cause fetal harm. METHODOLOGY/PRINCIPAL FINDINGS: To evaluate the pathway of vertical transmission of African-lineage ZIKV, we inoculated nine pregnant rhesus macaques (Macaca mulatta) subcutaneously with 44 plaque-forming units of a ZIKV strain from Senegal, (ZIKV-DAK). Dams were inoculated either at gestational day 30 or 45. Following maternal inoculation, pregnancies were surgically terminated seven or 14 days later and fetal and maternal-fetal interface tissues were collected and evaluated. Infection in the dams was evaluated via plasma viremia and neutralizing antibody titers pre- and post- ZIKV inoculation. All dams became productively infected and developed strong neutralizing antibody responses. ZIKV RNA was detected in maternal-fetal interface tissues (placenta, decidua, and fetal membranes) by RT-qPCR and in situ hybridization. In situ hybridization detected ZIKV predominantly in the decidua and revealed that the fetal membranes may play a role in ZIKV vertical transmission. Infectious ZIKV was detected in the amniotic fluid of three pregnancies and one fetus had ZIKV RNA detected in multiple tissues. No significant pathology was observed in any fetus; and ZIKV did not have a substantial effect on the placenta. CONCLUSIONS/SIGNIFICANCE: This study demonstrates that a very low dose of African-lineage ZIKV can be vertically transmitted to the macaque fetus during pregnancy. The low inoculating dose used in this study suggests a low minimal infectious dose for rhesus macaques. Vertical transmission with a low dose in macaques further supports the high epidemic potential of African ZIKV strains.
Asunto(s)
Complicaciones Infecciosas del Embarazo , Infección por el Virus Zika , Virus Zika , Humanos , Animales , Femenino , Embarazo , Virus Zika/genética , Macaca mulatta/genética , Complicaciones Infecciosas del Embarazo/veterinaria , Líquido Amniótico/metabolismo , Anticuerpos Neutralizantes , Transmisión Vertical de Enfermedad Infecciosa/veterinaria , ARN , Modelos Animales de EnfermedadRESUMEN
Introduction: Zika virus (ZIKV) infection during pregnancy results in a spectrum of birth defects and neurodevelopmental deficits in prenatally exposed infants, with no clear understanding of why some pregnancies are more severely affected. Differential control of maternal ZIKV infection may explain the spectrum of adverse outcomes. Methods: Here, we investigated whether the magnitude and breadth of the maternal ZIKV-specific antibody response is associated with better virologic control using a rhesus macaque model of prenatal ZIKV infection. We inoculated 18 dams with an Asian-lineage ZIKV isolate (PRVABC59) at 30-45 gestational days. Plasma vRNA and infectious virus kinetics were determined over the course of pregnancy, as well as vRNA burden in the maternal-fetal interface (MFI) at delivery. Binding and neutralizing antibody assays were performed to determine the magnitude of the ZIKV-specific IgM and IgG antibody responses throughout pregnancy, along with peptide microarray assays to define the breadth of linear ZIKV epitopes recognized. Results: Dams with better virologic control (n= 9) cleared detectable infectious virus and vRNA from the plasma by 7 days post-infection (DPI) and had a lower vRNA burden in the MFI at delivery. In comparison, dams with worse virologic control (n= 9) still cleared detectable infectious virus from the plasma by 7 DPI but had vRNA that persisted longer, and had higher vRNA burden in the MFI at delivery. The magnitudes of the ZIKV-specific antibody responses were significantly lower in the dams with better virologic control, suggesting that higher antibody titers are not associated with better control of ZIKV infection. Additionally, the breadth of the ZIKV linear epitopes recognized did not differ between the dams with better and worse control of ZIKV infection. Discussion: Thus, the magnitude and breadth of the maternal antibody responses do not seem to impact maternal virologic control. This may be because control of maternal infection is determined in the first 7 DPI, when detectable infectious virus is present and before robust antibody responses are generated. However, the presence of higher ZIKV-specific antibody titers in dams with worse virologic control suggests that these could be used as a biomarker of poor maternal control of infection and should be explored further.
Asunto(s)
Complicaciones Infecciosas del Embarazo , Infección por el Virus Zika , Virus Zika , Embarazo , Femenino , Animales , Humanos , Macaca mulatta , EpítoposRESUMEN
BACKGROUND: Understanding gait development is essential for identifying motor impairments in neurodevelopmental disorders. Defining typical gait development in a rhesus macaque model is critical prior to characterizing abnormal gait. The goal of this study was to 1) explore the feasibility of using the Noldus Catwalk to assess gait in infant rhesus macaques and 2) provide preliminary normative data of gait development during the first month of life. NEW METHOD: The Noldus Catwalk was used to assess gait speed, dynamic and static paw measurements, and interlimb coordination in twelve infant rhesus macaques at 14, 21, and 28 days of age. All macaque runs were labeled as a diagonal or non-diagonal walking pattern. RESULTS: Infant rhesus macaques primarily used a diagonal (mature) walking pattern as early as 14 days of life. Ten infant rhesus macaques (83.3%) were able to successfully walk across the Noldus Catwalk at 28 days of life. Limited differences in gait parameters were observed between timepoints because of the variability within the group at 14, 21, and 28 days. COMPARISON WITH EXISTING METHODS: No prior gait analysis system has been used to provide objective quantification of gait parameters for infant macaques. CONCLUSIONS: The Catwalk system can be utilized to quantify gait in infant rhesus macaques less than 28 days old. Future applications to infant rhesus macaques could provide a better understanding of gait development and early differences within various neurodevelopmental disorders.
Asunto(s)
Marcha , Caminata , Animales , Macaca mulattaRESUMEN
Countermeasures against Zika virus (ZIKV), including vaccines, are frequently tested in nonhuman primates (NHP). Macaque models are important for understanding how ZIKV infections impact human pregnancy due to similarities in placental development. The lack of consistent adverse pregnancy outcomes in ZIKV-affected pregnancies poses a challenge in macaque studies where group sizes are often small (4-8 animals). Studies in small animal models suggest that African-lineage Zika viruses can cause more frequent and severe fetal outcomes. No adverse outcomes were observed in macaques exposed to 1x104 PFU (low dose) of African-lineage ZIKV at gestational day (GD) 45. Here, we exposed eight pregnant rhesus macaques to 1x108 PFU (high dose) of African-lineage ZIKV at GD 45 to test the hypothesis that adverse pregnancy outcomes are dose-dependent. Three of eight pregnancies ended prematurely with fetal death. ZIKV was detected in both fetal and placental tissues from all cases of early fetal loss. Further refinements of this exposure system (e.g., varying the dose and timing of infection) could lead to an even more consistent, unambiguous fetal loss phenotype for assessing ZIKV countermeasures in pregnancy. These data demonstrate that high-dose exposure to African-lineage ZIKV causes pregnancy loss in macaques and also suggest that ZIKV-induced first trimester pregnancy loss could be strain-specific.
Asunto(s)
Complicaciones Infecciosas del Embarazo , Infección por el Virus Zika , Virus Zika , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Macaca mulatta , Placenta , Embarazo , Resultado del Embarazo , Virus Zika/genéticaRESUMEN
There are currently no approved drugs to treat Zika virus (ZIKV) infection during pregnancy. Hyperimmune globulin products such as VARIZIG and WinRho are FDA-approved to treat conditions during pregnancy such as Varicella Zoster virus infection and Rh-incompatibility. We administered ZIKV-specific human immune globulin as a treatment in pregnant rhesus macaques one day after subcutaneous ZIKV infection. All animals controlled ZIKV viremia following the treatment and generated robust levels of anti-Zika virus antibodies in their blood. No adverse fetal or infant outcomes were identified in the treated animals, yet the placebo control treated animals also did not have signs related to congenital Zika syndrome (CZS). Human immune globulin may be a viable prophylaxis and treatment option for ZIKV infection during pregnancy, however, more studies are required to fully assess the impact of this treatment to prevent CZS.
Asunto(s)
Complicaciones Infecciosas del Embarazo , Infección por el Virus Zika , Virus Zika , Animales , Femenino , Humanos , Inmunoglobulinas , Lactante , Macaca mulatta , Embarazo , ViremiaRESUMEN
Infants exposed to Zika virus (ZIKV) prenatally may develop birth defects, developmental deficits, or remain asymptomatic. It is unclear why some infants are more affected than others, although enhancement of maternal ZIKV infection via immunity to an antigenically similar virus, dengue virus (DENV), may play a role. We hypothesized that DENV immunity may worsen prenatal ZIKV infection and developmental deficits in offspring. We utilized a translational macaque model to examine how maternal DENV immunity influences ZIKV-exposed infant macaque neurodevelopment in the first month of life. We inoculated eight macaques with prior DENV infection with ZIKV, five macaques with ZIKV, and four macaques with saline. DENV/ZIKV-exposed infants had significantly worse visual orientation skills than ZIKV-exposed infants whose mothers were DENV-naive, with no differences in motor, sensory or state control development. ZIKV infection characteristics and pregnancy outcomes did not individually differ between dams with and without DENV immunity, but when multiple factors were combined in a multivariate model, maternal DENV immunity combined with ZIKV infection characteristics and pregnancy parameters predicted select developmental outcomes. We demonstrate that maternal DENV immunity exacerbates visual orientation and tracking deficits in ZIKV-exposed infant macaques, suggesting that human studies should evaluate how maternal DENV immunity impacts long-term neurodevelopment.
Asunto(s)
Animales Recién Nacidos/crecimiento & desarrollo , Dengue/inmunología , Sistema Nervioso/crecimiento & desarrollo , Complicaciones Infecciosas del Embarazo , Infección por el Virus Zika , Animales , Anticuerpos Antivirales/sangre , Virus del Dengue/inmunología , Modelos Animales de Enfermedad , Femenino , Desarrollo Fetal , Macaca mulatta , Actividad Motora , Orientación , Embarazo , Efectos Tardíos de la Exposición Prenatal , Virus Zika/inmunologíaRESUMEN
Concerns have arisen that pre-existing immunity to dengue virus (DENV) could enhance Zika virus (ZIKV) disease, due to the homology between ZIKV and DENV and the observation of antibody-dependent enhancement (ADE) among DENV serotypes. To date, no study has examined the impact of pre-existing DENV immunity on ZIKV pathogenesis during pregnancy in a translational non-human primate model. Here we show that macaques with a prior DENV-2 exposure had a higher burden of ZIKV vRNA in maternal-fetal interface tissues as compared to DENV-naive macaques. However, pre-existing DENV immunity had no detectable impact on ZIKV replication kinetics in maternal plasma, and all pregnancies progressed to term without adverse outcomes or gross fetal abnormalities detectable at delivery. Understanding the risks of ADE to pregnant women worldwide is critical as vaccines against DENV and ZIKV are developed and licensed and as DENV and ZIKV continue to circulate.
Asunto(s)
Virus del Dengue , Dengue/inmunología , Intercambio Materno-Fetal , Infección por el Virus Zika/patología , Virus Zika , Animales , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/metabolismo , Antígenos Virales , Dengue/virología , Femenino , Transmisión Vertical de Enfermedad Infecciosa , Placenta , Embarazo , ARN Viral , Replicación ViralRESUMEN
Congenital Zika virus (ZIKV) exposure results in a spectrum of disease ranging from severe birth defects to delayed onset neurodevelopmental deficits. ZIKV-related neuropathogenesis, predictors of birth defects, and neurodevelopmental deficits are not well defined in people. Here we assess the methodological and statistical feasibility of a congenital ZIKV exposure macaque model for identifying infant neurobehavior and brain abnormalities that may underlie neurodevelopmental deficits. We inoculated five pregnant macaques with ZIKV and mock-inoculated one macaque in the first trimester. Following birth, growth, ocular structure/function, brain structure, hearing, histopathology, and neurobehavior were quantitatively assessed during the first week of life. We identified the typical pregnancy outcomes of congenital ZIKV infection, with fetal demise and placental abnormalities. We estimated sample sizes needed to define differences between groups and demonstrated that future studies quantifying brain region volumes, retinal structure, hearing, and visual pathway function require a sample size of 14 animals per group (14 ZIKV, 14 control) to detect statistically significant differences in at least half of the infant exam parameters. Establishing the parameters for future studies of neurodevelopmental outcomes following congenital ZIKV exposure in macaques is essential for robust and rigorous experimental design.
Asunto(s)
Trastornos de la Audición/patología , Malformaciones del Sistema Nervioso/patología , Complicaciones Infecciosas del Embarazo/patología , Efectos Tardíos de la Exposición Prenatal/patología , Trastornos de la Visión/patología , Infección por el Virus Zika/complicaciones , Virus Zika/fisiología , Animales , Animales Recién Nacidos , Femenino , Trastornos de la Audición/etiología , Macaca mulatta , Malformaciones del Sistema Nervioso/etiología , Embarazo , Complicaciones Infecciosas del Embarazo/etiología , Resultado del Embarazo , Efectos Tardíos de la Exposición Prenatal/etiología , Trastornos de la Visión/etiología , Infección por el Virus Zika/virologíaRESUMEN
Flavin-containing monooxygenases (FMOs) play significant roles in the metabolism of drugs and endogenous or foreign compounds. In this study, the regional distribution of FMO isoforms 1, 3, and 4 was investigated in male Sprague-Dawley rat liver and kidney using immunohistochemistry (IHC). Rabbit polyclonal antibodies to rat FMO1 and FMO4, developed using anti-peptide technology, and commercial anti-human FMO3 antibody were used; specificities of the antibodies were verified using Western blotting, immunoprecipitation, and IHC. In liver, the highest immunoreactivity for FMO1 and FMO3 was detected in the perivenous region, and immunoreactivity decreased in intensity toward the periportal region. In contrast, FMO4 immunoreactivity was detected with the opposite lobular distribution. In the kidney, the highest immunoreactivity for FMO1, -3, and -4 was detected in the distal tubules. FMO1 and FMO4 immunoreactivity was also detected in the proximal tubules with strong staining in the brush borders, whereas less FMO3 immunoreactivity was detected in the proximal tubules. Immunoreactivity for FMO3 and FMO4 was detected in the collecting tubules in the renal medulla and the glomerulus, whereas little FMO1 immunoreactivity was detected in these regions. The FMO1 antibody did not react with human liver or kidney microsomes. However, the FMO4 antibody reacted with male and female mouse and human tissues. These data provided a compelling visual demonstration of the isoform-specific localization patterns of FMO1, -3, and -4 in the rat liver and kidney and the first evidence for expression of FMO4 at the protein level in mouse and human liver and kidney microsomes.
Asunto(s)
Riñón/metabolismo , Hígado/metabolismo , Oxigenasas/metabolismo , Isoformas de Proteínas/metabolismo , Animales , Anticuerpos/inmunología , Especificidad de Anticuerpos/inmunología , Reacciones Cruzadas/inmunología , Femenino , Aparato de Golgi/metabolismo , Humanos , Corteza Renal/metabolismo , Glomérulos Renales/metabolismo , Médula Renal/metabolismo , Túbulos Renales/metabolismo , Masculino , Ratones , Ratones Endogámicos , Microsomas/metabolismo , Oxigenasas/inmunología , Isoformas de Proteínas/inmunología , Ratas , Ratas Sprague-DawleyRESUMEN
While all 2-methylene-19-nor analogs of 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) tested produce an increase in epidermal thickness in the rhino mouse, only a subset reduce utricle size (comedolysis). All-trans retinoic acid (atRA) also causes epidermal thickening and a reduction in utricle size in the rhino mouse. We now report that 2-methylene-19-nor-(20S)-1α-hydroxybishomopregnacalciferol (2MbisP), a comedolytic analog, increases epidermal thickening more rapidly than does atRA, while both reduce utricle area at an equal rate. Whereas unlike atRA, 2MbisP does not alter the epidermal growth factor receptor ligand, heparin-binding epidermal growth factor-like growth factor, it does increase the expression of both amphiregulin and epigen mRNA, even after a single dose. In situ hybridization reveals an increase in these transcripts throughout the closing utricle as well as in the interfollicular epidermis. The mRNAs for other EGFR ligands including betacellulin and transforming growth factor-α, as well as the epidermal growth factor receptor are largely unaffected by 2MbisP. Another analog, 2-methylene-19-nor-(20S)-26,27-dimethylene-1α,25-dihydroxyvitamin D3 (CAGE-3), produces epidermal thickening but fails to reduce utricle size or increase AREG mRNA levels. CAGE-3 modestly increases epigen mRNA levels, but only after 5 days of dosing. Thus, 2-MbisP produces unique changes in epidermal growth factor receptor ligand mRNAs that may be responsible for both epidermal proliferation and a reduction in utricle size.
Asunto(s)
Calcitriol/análogos & derivados , Factor de Crecimiento Similar a EGF de Unión a Heparina/genética , Piel/efectos de los fármacos , Tretinoina/farmacología , Animales , Calcitriol/química , Calcitriol/farmacología , Receptores ErbB/metabolismo , Femenino , Factor de Crecimiento Similar a EGF de Unión a Heparina/metabolismo , Ligandos , Masculino , Ratones , ARN Mensajero/genética , Receptores de Calcitriol/metabolismo , Piel/metabolismoRESUMEN
Angiotensin II increases blood pressure and stimulates thirst and sodium appetite in the brain. It also stimulates secretion of aldosterone from the adrenal zona glomerulosa and epinephrine from the adrenal medulla. The rat has 3 subtypes of angiotensin II receptors: AT1a, AT1b, and AT2. mRNAs for all three subtypes occur in the adrenal and brain. To immunohistochemically differentiate these receptor subtypes, rabbits were immunized with C-terminal fragments of these subtypes to generate receptor subtype-specific antibodies. Immunofluorescence revealed AT1a and AT2 receptors in adrenal zona glomerulosa and medulla. AT1b immunofluorescence was present in the zona glomerulosa, but not the medulla. Ultrastructural immunogold labeling for the AT1a receptor in glomerulosa and medullary cells localized it to plasma membrane, endocytic vesicles, multivesicular bodies, and the nucleus. AT1b and AT2, but not AT1a, immunofluorescence was observed in the anterior pituitary. Stellate cells were AT1b positive while ovoid cells were AT2 positive. In the brain, neurons were AT1a, AT1b, and AT2 positive, but glia was only AT1b positive. Highest levels of AT1a, AT1b, and AT2 receptor immunofluorescence were in the subfornical organ, median eminence, area postrema, paraventricular nucleus, and solitary tract nucleus. These studies complement those employing different techniques to characterize Ang II receptors.
RESUMEN
Canine malignant melanoma (CMM) resembles human malignant melanoma in terms of metastatic behavior, refractoriness to standard therapy, and tumor antigen expression but it is largely unknown how CMM resembles human melanoma with regard to molecular pathogenesis and cellular signaling. No attempt has been made to systematically define the repertoire of tyrosine kinases (TKs) expressed in CMM. This study used a reverse transcription-PCR display technique to evaluate the expression of multiple TKs in the 17CM98 CMM cell line. RT-PCR was performed using degenerate primers coding for highly conserved regions flanking the kinase domains of many TKs and the repertoire of TKs expressed was determined using standard molecular cloning techniques. Sequencing 46 clones yielded canine homologs of insulin-like growth factor-1 receptor (IGF-1R) (50%), JAK1 (17%), PDGFR-a (11%), FGFR1 (9%), Axl (7%), Abl (4%), and PTK2 (2%). Interestingly, IGF-1R, JAK1, and Axl were detected in human melanoma using similar techniques, supporting the cross-species validity of this assay. Given the abundance of IGF-1R clones, we determined the biological effect of rhIGF-1 in 17CM98 cells. IGF-1 stimulated cell proliferation and vascular endothelial growth factor production in 17CM98, and addition of the IGF-1R inhibitor ADW742 abrogated IGF-1-induced phenotypic changes. Expression of IGF-1R mRNA was detected in five of five additional CMM cell cultures, and IGF-1R protein was detected in five of six primary tumors evaluated, suggesting that IGF-1R expression may be common in CMM and may provide a novel target for future therapy. In conclusion, this study suggests that similar TKs are expressed in human and canine melanoma, and shows potential antitumor effects of IGF-1R inhibition in CMM.
Asunto(s)
Enfermedades de los Perros/enzimología , Melanoma/enzimología , Melanoma/veterinaria , Proteínas Tirosina Quinasas/biosíntesis , Receptor IGF Tipo 1/antagonistas & inhibidores , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/veterinaria , Neoplasias Cutáneas/veterinaria , Animales , Línea Celular Tumoral , Enfermedades de los Perros/tratamiento farmacológico , Enfermedades de los Perros/patología , Perros , Humanos , Melanoma/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/genética , Pirimidinas/farmacología , Pirroles/farmacología , Receptor IGF Tipo 1/biosíntesis , Receptor IGF Tipo 1/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Transducción de Señal/efectos de los fármacos , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/enzimología , Neoplasias Cutáneas/patologíaRESUMEN
A xenogeneic melanoma-antigen-enhanced allogeneic tumor cell vaccine (ATCV) is an appealing strategy for anti-cancer immunotherapy due to its relative ease of production, and the theoretical possibility that presentation of a multiplex of antigens along with a xenogeneic antigen would result in cross-reaction between the xenogeneic homologs and self-molecules, breaking tolerance and ultimately resulting in a clinically relevant immune response. In this study, we evaluated the efficacy of such a strategy using a xenogeneic melanoma differentiation antigen, human glycoprotein 100 (hgp100) in the context of a phase II clinical trial utilizing spontaneously arising melanoma in pet dogs. Our results demonstrate that the approach was well tolerated and resulted in an overall response rate (complete and partial response) of 17% and a tumor control rate (complete and partial response and stable disease of >6 weeks duration) of 35%. Dogs that had evidence of tumor control had significantly longer survival times than dogs that did not experience control. Delayed type hypersensitivity (DTH) to 17CM98 canine melanoma cells used in the whole cell vaccine was enhanced by ATCV and correlated with clinical response. In vitro cytotoxicity was enhanced by ATCV, but did not correlate with clinical response. Additionally, anti-hgp100 antibodies were elicited in response to ATCV in the majority of patients tested; however, this also did not correlate with clinical response. This approach, along with further elucidation of the mechanisms of tumor protection after xenogeneic immunization, may allow the development of more rational vaccines. This trial also further demonstrates the utility of spontaneous tumors in companion animals as a valid translational model for the evaluation of novel vaccine therapies.