RESUMEN
Reversing CD8+ T cell dysfunction is crucial in treating chronic hepatitis B virus (HBV) infection, yet specific molecular targets remain unclear. Our study analyzed co-signaling receptors during hepatocellular priming and traced the trajectory and fate of dysfunctional HBV-specific CD8+ T cells. Early on, these cells upregulate PD-1, CTLA-4, LAG-3, OX40, 4-1BB, and ICOS. While blocking co-inhibitory receptors had minimal effect, activating 4-1BB and OX40 converted them into antiviral effectors. Prolonged stimulation led to a self-renewing, long-lived, heterogeneous population with a unique transcriptional profile. This includes dysfunctional progenitor/stem-like (TSL) cells and two distinct dysfunctional tissue-resident memory (TRM) populations. While 4-1BB expression is ubiquitously maintained, OX40 expression is limited to TSL. In chronic settings, only 4-1BB stimulation conferred antiviral activity. In HBeAg+ chronic patients, 4-1BB activation showed the highest potential to rejuvenate dysfunctional CD8+ T cells. Targeting all dysfunctional T cells, rather than only stem-like precursors, holds promise for treating chronic HBV infection.
Asunto(s)
Linfocitos T CD8-positivos , Virus de la Hepatitis B , Hepatitis B Crónica , Humanos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Hepatitis B Crónica/tratamiento farmacológico , Hepatitis B Crónica/virología , Hepatitis B Crónica/metabolismo , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo , Transducción de Señal , Animales , Receptores OX40/metabolismo , Ratones , Receptor de Muerte Celular Programada 1/metabolismo , Antígenos CD/metabolismoRESUMEN
Kupffer cells (KCs) are highly abundant, intravascular, liver-resident macrophages known for their scavenger and phagocytic functions. KCs can also present antigens to CD8+ T cells and promote either tolerance or effector differentiation, but the mechanisms underlying these discrepant outcomes are poorly understood. Here, we used a mouse model of hepatitis B virus (HBV) infection, in which HBV-specific naive CD8+ T cells recognizing hepatocellular antigens are driven into a state of immune dysfunction, to identify a subset of KCs (referred to as KC2) that cross-presents hepatocellular antigens upon interleukin-2 (IL-2) administration, thus improving the antiviral function of T cells. Removing MHC-I from all KCs, including KC2, or selectively depleting KC2 impaired the capacity of IL-2 to revert the T cell dysfunction induced by intrahepatic priming. In summary, by sensing IL-2 and cross-presenting hepatocellular antigens, KC2 overcome the tolerogenic potential of the hepatic microenvironment, suggesting new strategies for boosting hepatic T cell immunity.
Asunto(s)
Presentación de Antígeno/inmunología , Linfocitos T CD8-positivos/inmunología , Reactividad Cruzada/inmunología , Interleucina-2/inmunología , Macrófagos del Hígado/inmunología , Animales , Hepatitis B/inmunología , Tolerancia Inmunológica/inmunología , Ratones , Ratones TransgénicosRESUMEN
The responses of CD8+ T cells to hepatotropic viruses such as hepatitis B range from dysfunction to differentiation into effector cells, but the mechanisms that underlie these distinct outcomes remain poorly understood. Here we show that priming by Kupffer cells, which are not natural targets of hepatitis B, leads to differentiation of CD8+ T cells into effector cells that form dense, extravascular clusters of immotile cells scattered throughout the liver. By contrast, priming by hepatocytes, which are natural targets of hepatitis B, leads to local activation and proliferation of CD8+ T cells but not to differentiation into effector cells; these cells form loose, intravascular clusters of motile cells that coalesce around portal tracts. Transcriptomic and chromatin accessibility analyses reveal unique features of these dysfunctional CD8+ T cells, with limited overlap with those of exhausted or tolerant T cells; accordingly, CD8+ T cells primed by hepatocytes cannot be rescued by treatment with anti-PD-L1, but instead respond to IL-2. These findings suggest immunotherapeutic strategies against chronic hepatitis B infection.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Reactividad Cruzada/inmunología , Virus de la Hepatitis B/inmunología , Hepatocitos/inmunología , Hepatocitos/virología , Animales , Antígeno B7-H1/antagonistas & inhibidores , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/metabolismo , Diferenciación Celular , Cromatina/metabolismo , Femenino , Hepatitis B/tratamiento farmacológico , Hepatitis B/inmunología , Hepatitis B/virología , Humanos , Tolerancia Inmunológica , Interleucina-2/inmunología , Interleucina-2/uso terapéutico , Macrófagos del Hígado/inmunología , Activación de Linfocitos , Masculino , Ratones , Transcriptoma/genéticaRESUMEN
Virus infection, such as hepatitis B virus (HBV), occasionally causes endoplasmic reticulum (ER) stress. The unfolded protein response (UPR) is counteractive machinery to ER stress, and the failure of UPR to cope with ER stress results in cell death. Mechanisms that regulate the balance between ER stress and UPR are poorly understood. Type 1 and type 2 interferons have been implicated in hepatic flares during chronic HBV infection. Here, we examined the interplay between ER stress, UPR, and IFNs using transgenic mice that express hepatitis B surface antigen (HBsAg) (HBs-Tg mice) and humanized-liver chimeric mice infected with HBV. IFNα causes severe and moderate liver injury in HBs-Tg mice and HBV infected chimeric mice, respectively. The degree of liver injury is directly correlated with HBsAg levels in the liver, and reduction of HBsAg in the transgenic mice alleviates IFNα mediated liver injury. Analyses of total gene expression and UPR biomarkers' protein expression in the liver revealed that UPR is induced in HBs-Tg mice and HBV infected chimeric mice, indicating that HBsAg accumulation causes ER stress. Notably, IFNα administration transiently suppressed UPR biomarkers before liver injury without affecting intrahepatic HBsAg levels. Furthermore, UPR upregulation by glucose-regulated protein 78 (GRP78) suppression or low dose tunicamycin alleviated IFNα mediated liver injury. These results suggest that IFNα induces ER stress-associated cell death by reducing UPR. IFNγ uses the same mechanism to exert cytotoxicity to HBsAg accumulating hepatocytes. Collectively, our data reveal a previously unknown mechanism of IFN-mediated cell death. This study also identifies UPR as a potential target for regulating ER stress-associated cell death.
Asunto(s)
Muerte Celular , Antígenos de Superficie de la Hepatitis B/metabolismo , Hepatitis B Crónica/complicaciones , Hepatocitos/patología , Interferón-alfa/farmacología , Fallo Hepático Agudo/patología , Respuesta de Proteína Desplegada/efectos de los fármacos , Animales , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico , Antígenos de Superficie de la Hepatitis B/genética , Virus de la Hepatitis B/aislamiento & purificación , Hepatitis B Crónica/patología , Hepatitis B Crónica/virología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/virología , Humanos , Fallo Hepático Agudo/etiología , Fallo Hepático Agudo/metabolismo , Ratones , Ratones TransgénicosRESUMEN
Immunity in the urinary tract has distinct and poorly understood pathophysiological characteristics and urinary tract infections (UTIs) are important causes of morbidity and mortality. We investigated the role of the soluble pattern recognition molecule pentraxin 3 (PTX3), a key component of the humoral arm of innate immunity, in UTIs. PTX3-deficient mice showed defective control of UTIs and exacerbated inflammation. Expression of PTX3 was induced in uroepithelial cells by uropathogenic Escherichia coli (UPEC) in a Toll-like receptor 4 (TLR4)- and MyD88-dependent manner. PTX3 enhanced UPEC phagocytosis and phagosome maturation by neutrophils. PTX3 was detected in urine of UTI patients and amounts correlated with disease severity. In cohorts of UTI-prone patients, PTX3 gene polymorphisms correlated with susceptibility to acute pyelonephritis and cystitis. These results suggest that PTX3 is an essential component of innate resistance against UTIs. Thus, the cellular and humoral arms of innate immunity exert complementary functions in mediating resistance against UTIs.
Asunto(s)
Proteína C-Reactiva/metabolismo , Infecciones por Escherichia coli/inmunología , Escherichia coli/inmunología , Neutrófilos/inmunología , Pielonefritis/inmunología , Receptores de Reconocimiento de Patrones/metabolismo , Componente Amiloide P Sérico/metabolismo , Infecciones Urinarias/inmunología , Animales , Proteína C-Reactiva/genética , Línea Celular , Niño , Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Infecciones por Escherichia coli/complicaciones , Femenino , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Inmunidad Innata , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Neutrófilos/microbiología , Fagocitosis , Polimorfismo Genético , Pielonefritis/etiología , Receptores de Reconocimiento de Patrones/genética , Componente Amiloide P Sérico/genética , Suecia , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Infecciones Urinarias/complicacionesRESUMEN
Pentraxins are a superfamily of conserved proteins involved in the acute-phase response and innate immunity. Pentraxin 3 (PTX3), a prototypical member of the long pentraxin subfamily, is a key component of the humoral arm of innate immunity that is essential for resistance to certain pathogens. A regulatory role for pentraxins in inflammation has long been recognized, but the underlying mechanisms remain unclear. Here we report that PTX3 bound P-selectin and attenuated neutrophil recruitment at sites of inflammation. PTX3 released from activated leukocytes functioned locally to dampen neutrophil recruitment and regulate inflammation. Antibodies have glycosylation-dependent regulatory effect on inflammation. Therefore, PTX3, which is an essential component of humoral innate immunity, and immunoglobulins share functional outputs, including complement activation, opsonization and, as shown here, glycosylation-dependent regulation of inflammation.
Asunto(s)
Proteína C-Reactiva/inmunología , Inflamación/inmunología , Rodamiento de Leucocito/inmunología , Infiltración Neutrófila/inmunología , Componente Amiloide P Sérico/inmunología , Lesión Pulmonar Aguda/inmunología , Animales , Células CHO , Separación Celular , Cricetinae , Cricetulus , Electroforesis en Gel de Poliacrilamida , Citometría de Flujo , Humanos , Inmunidad Humoral/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Recombinantes/inmunologíaRESUMEN
Flotillin-1 (Flot1) is an evolutionary conserved, ubiquitously expressed lipid raft-associated scaffolding protein. Migration of Flot1-deficient neutrophils is impaired because of a decrease in myosin II-mediated contractility. Flot1 also accumulates in the uropod of polarized T cells, suggesting an analogous role in T cell migration. In this study, we analyzed morphology and migration parameters of murine wild-type and Flot1-/- CD8+ T cells using in vitro assays and intravital two-photon microscopy of lymphoid and nonlymphoid tissues. Flot1-/- CD8+ T cells displayed significant alterations in cell shape and motility parameters in vivo but showed comparable homing to lymphoid organs and intact in vitro migration to chemokines. Furthermore, their clonal expansion and infiltration into nonlymphoid tissues during primary and secondary antiviral immune responses was comparable to wild-type CD8+ T cells. Taken together, Flot1 plays a detectable but unexpectedly minor role for CD8+ T cell behavior under physiological conditions.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Proteínas de la Membrana/fisiología , Animales , Linfocitos T CD8-positivos/fisiología , Movimiento Celular , Epidermis/inmunología , Femenino , Memoria Inmunológica , Activación de Linfocitos , Masculino , Microdominios de Membrana/fisiología , Ratones , Ratones Endogámicos C57BLRESUMEN
BACKGROUND & AIMS: Besides secreting pro-inflammatory cytokines, chemokines and effector molecules, effector CD8+ T cells that arise upon acute infection with certain viruses have been shown to produce the regulatory cytokine interleukin (IL)-10 and, therefore, contain immunopathology. Whether the same occurs during acute hepatitis B virus (HBV) infection and role that IL-10 might play in liver disease is currently unknown. METHODS: Mouse models of acute HBV pathogenesis, as well as chimpanzees and patients acutely infected with HBV, were used to analyse the role of CD8+ T cell-derived IL-10 in liver immunopathology. RESULTS: Mouse HBV-specific effector CD8+ T cells produce significant amounts of IL-10 upon in vivo antigen encounter. This is corroborated by longitudinal data in a chimpanzee acutely infected with HBV, where serum IL-10 was readily detectable and correlated with intrahepatic CD8+ T cell infiltration and liver disease severity. Unexpectedly, mouse and human CD8+ T cell-derived IL-10 was found to act in an autocrine/paracrine fashion to enhance IL-2 responsiveness, thus preventing antigen-induced HBV-specific effector CD8+ T cell apoptosis. Accordingly, the use of mouse models of HBV pathogenesis revealed that the IL-10 produced by effector CD8+ T cells promoted their own intrahepatic survival and, thus supported, rather than suppressed liver immunopathology. CONCLUSION: Effector CD8+ T cell-derived IL-10 enhances acute liver immunopathology. Altogether, these results extend our understanding of the cell- and tissue-specific role that IL-10 exerts in immune regulation. Lay summary: Interleukin-10 is mostly regarded as an immunosuppressive cytokine. We show here that HBV-specific CD8+ T cells produce IL-10 upon antigen recognition and that this cytokine enhances CD8+ T cell survival. As such, IL-10 paradoxically promotes rather than suppresses liver disease.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Interleucina-10/fisiología , Hígado/inmunología , Enfermedad Aguda , Animales , Apoptosis , Virus de la Hepatitis B/inmunología , Humanos , Interleucina-2/farmacología , Hígado/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Pan troglodytesRESUMEN
Agrin, an extracellular matrix protein belonging to the heterogeneous family of heparan sulfate proteoglycans (HSPGs), is expressed by cells of the hematopoietic system but its role in leukocyte biology is not yet clear. Here we demonstrate that agrin has a crucial, nonredundant role in myeloid cell development and functions. We have identified lineage-specific alterations that affect maturation, survival and properties of agrin-deficient monocytic cells, and occur at stages later than stem cell precursors. Our data indicate that the cell-autonomous signals delivered by agrin are sensed by macrophages through the α-DC (DG) receptor and lead to the activation of signaling pathways resulting in rearrangements of the actin cytoskeleton during the phagocytic synapse formation and phosphorylation of extracellular signal-regulated kinases (Erk 1/2). Altogether, these data identify agrin as a novel player of innate immunity.
Asunto(s)
Agrina/metabolismo , Células Mieloides/citología , Mielopoyesis , Agrina/análisis , Agrina/genética , Animales , Supervivencia Celular , Distroglicanos/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Macrófagos/citología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Monocitos/citología , Monocitos/metabolismo , Células Mieloides/metabolismo , Fagocitosis , FosforilaciónRESUMEN
BACKGROUND: In cystic fibrosis (CF) patients, chronic lung infection and inflammation due to Pseudomonas aeruginosa contribute to the decline of lung function. The increased prevalence of multidrug resistance among bacteria and the adverse effects of antiinflammatory agents highlight the need for alternative therapeutic approaches that should be tested in a relevant animal model. METHODS: Gut-corrected CF and non-CF mice were chronically infected with a multidrug-resistant P. aeruginosa strain and treated with the long pentraxin PTX3. Body weight, bacterial count, inflammation, and lung pathology were evaluated after 12 days. PTX3 localization in CF sputum specimens was analyzed by immunofluorescence. RESULTS: Chronic P. aeruginosa infection developed similarly in CF and non-CF mice but differed in terms of the inflammatory response. Leukocyte recruitment in the airways, cytokine levels, and chemokine levels were significantly higher in CF mice, compared with non-CF mice. PTX3 treatment, which facilitates phagocytosis of pathogens, reduced P. aeruginosa colonization and restored airway inflammation in CF mice to levels observed in non-CF mice. The presence of PTX3 in CF sputum, in leukocytes, or bound to P. aeruginosa macrocolonies, as well as previous data on PTX3 polymorphisms in colonized CF patients, confirm the relevance of this molecule. CONCLUSIONS: These findings represent a step forward in demonstrating the therapeutic potential of PTX3 in CF.
Asunto(s)
Proteína C-Reactiva/uso terapéutico , Ratones Endogámicos CFTR/microbiología , Infecciones por Pseudomonas/inmunología , Componente Amiloide P Sérico/uso terapéutico , Animales , Femenino , Técnica del Anticuerpo Fluorescente Indirecta , Pulmón/inmunología , Pulmón/microbiología , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos CFTR/inmunología , Fagocitosis/inmunología , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/patología , Proteínas Recombinantes/uso terapéuticoRESUMEN
Multiple myeloma (MM) is linked to chronic NF-κB activity in myeloma cells, but this activity is generally considered a cell-autonomous property of the cancer cells. The precise extent of NF-κB activation and the contributions of the physical microenvironment and of cell-to-cell communications remain largely unknown. By quantitative immunofluorescence, we found that NF-κB is mildly and heterogeneously activated in a fraction of MM cells in human BMs, while only a minority of MM cells shows a strong activation. To gain quantitative insights on NF-κB activation in living MM cells, we combined advanced live imaging of endogenous p65 Venus-knocked-in in MM.1S and HS-5 cell lines to model MM and mesenchymal stromal cells (MSCs), cell co-cultures, microfluidics and custom microbioreactors to mimic the 3D-interactions within the bone marrow (BM) microenvironment. We found that i) reciprocal MM-MSC paracrine crosstalk and cell-to-scaffold interactions shape the inflammatory response in the BM; ii) the pro-inflammatory cytokine IL-1ß, abundant in MM patients' plasma, activates MSCs, whose paracrine signals are responsible for strong NF-κB activation in a minority of MM cells; iii) IL-1ß, but not TNF-α, activates NF-κB in vivo in BM-engrafted MM cells, while its receptor inhibitor Anakinra reduces the global NF-κB activation. We propose that NF-κB activation in the BM of MM patients is mild, restricted to a minority of cells and modulated by the interplay of restraining physical microenvironmental cues and activating IL-1ß-dependent stroma-to-MM crosstalk.
Asunto(s)
Técnicas de Cocultivo , Células Madre Mesenquimatosas , Mieloma Múltiple , FN-kappa B , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , Mieloma Múltiple/genética , Humanos , Células Madre Mesenquimatosas/metabolismo , FN-kappa B/metabolismo , Línea Celular Tumoral , Interleucina-1beta/metabolismo , Microambiente Tumoral , Comunicación Celular , Células del Estroma/metabolismo , Células del Estroma/patología , Comunicación Paracrina , Transducción de Señal , Factor de Transcripción ReIA/metabolismoRESUMEN
Neutrophils are increasingly recognized as key players in the tumor immune response and are associated with poor clinical outcomes. Despite recent advances characterizing the diversity of neutrophil states in cancer, common trajectories and mechanisms governing the ontogeny and relationship between these neutrophil states remain undefined. Here, we demonstrate that immature and mature neutrophils that enter tumors undergo irreversible epigenetic, transcriptional, and proteomic modifications to converge into a distinct, terminally differentiated dcTRAIL-R1+ state. Reprogrammed dcTRAIL-R1+ neutrophils predominantly localize to a glycolytic and hypoxic niche at the tumor core and exert pro-angiogenic function that favors tumor growth. We found similar trajectories in neutrophils across multiple tumor types and in humans, suggesting that targeting this program may provide a means of enhancing certain cancer immunotherapies.
Asunto(s)
Reprogramación Celular , Neoplasias , Neovascularización Patológica , Neutrófilos , Humanos , Neoplasias/irrigación sanguínea , Neoplasias/inmunología , Neutrófilos/inmunología , Proteómica , Reprogramación Celular/genética , Reprogramación Celular/inmunología , Neovascularización Patológica/genética , Neovascularización Patológica/inmunología , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/inmunología , Epigénesis Genética , Hipoxia , Transcripción GenéticaRESUMEN
The long pentraxin (PTX) 3 is produced by macrophages and myeloid dendritic cells in response to Toll-like receptor agonists and represents a nonredundant component of humoral innate immunity against selected pathogens. We report that, unexpectedly, PTX3 is stored in specific granules and undergoes release in response to microbial recognition and inflammatory signals. Released PTX3 can partially localize in neutrophil extracellular traps formed by extruded DNA. Eosinophils and basophils do not contain preformed PTX3. PTX3-deficient neutrophils have defective microbial recognition and phagocytosis, and PTX3 is nonredundant for neutrophil-mediated resistance against Aspergillus fumigatus. Thus, neutrophils serve as a reservoir, ready for rapid release, of the long PTX3, a key component of humoral innate immunity with opsonic activity.
Asunto(s)
Proteína C-Reactiva/metabolismo , Gránulos Citoplasmáticos/metabolismo , Espacio Extracelular/metabolismo , Neutrófilos/citología , Componente Amiloide P Sérico/metabolismo , Animales , Proteína C-Reactiva/deficiencia , Proteína C-Reactiva/genética , Células Cultivadas , Regulación de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neutrófilos/metabolismo , Unión Proteica , Componente Amiloide P Sérico/deficiencia , Componente Amiloide P Sérico/genéticaRESUMEN
Chronic lung infections by Pseudomonas aeruginosa strains are a major cause of morbidity and mortality in cystic fibrosis (CF) patients. Although there is no clear evidence for a primary defect in the immune system of CF patients, the host is generally unable to clear P. aeruginosa from the airways. PTX3 is a soluble pattern recognition receptor that plays nonredundant roles in the innate immune response to fungi, bacteria, and viruses. In particular, PTX3 deficiency is associated with increased susceptibility to P. aeruginosa lung infection. To address the potential therapeutic effect of PTX3 in P. aeruginosa lung infection, we established persistent and progressive infections in mice with the RP73 clinical strain RP73 isolated from a CF patient and treated them with recombinant human PTX3. The results indicated that PTX3 has a potential therapeutic effect in P. aeruginosa chronic lung infection by reducing lung colonization, proinflammatory cytokine levels (CXCL1, CXCL2, CCL2, and IL-1ß), and leukocyte recruitment in the airways. In models of acute infections and in in vitro assays, the prophagocytic effect of PTX3 was maintained in C1q-deficient mice and was lost in C3- and Fc common γ-chain-deficient mice, suggesting that facilitated recognition and phagocytosis of pathogens through the interplay between complement and FcγRs are involved in the therapeutic effect mediated by PTX3. These data suggested that PTX3 is a potential therapeutic tool in chronic P. aeruginosa lung infections, such as those seen in CF patients.
Asunto(s)
Proteína C-Reactiva/uso terapéutico , Factores Inmunológicos/uso terapéutico , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/inmunología , Infecciones del Sistema Respiratorio/tratamiento farmacológico , Componente Amiloide P Sérico/uso terapéutico , Animales , Enfermedad Crónica , Técnica del Anticuerpo Fluorescente , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Infecciones por Pseudomonas/inmunología , Infecciones del Sistema Respiratorio/inmunologíaRESUMEN
The innate immune system consists of a cellular arm and a humoral arm. Components of humoral immunity include diverse molecular families, which represent functional ancestors of antibodies. They play a key role as effectors and modulators of innate resistance in animals and humans, interacting with cellular innate immunity. The prototypic long pentraxin, pentraxin 3 (PTX3), represents a case in point of this interplay. Gene targeting of this evolutionarily conserved long pentraxin has unequivocally defined its role at the crossroads of innate immunity, inflammation, matrix deposition, and female fertility. Phagocytes represent a key source of this fluid-phase pattern recognition receptor, which, in turn, facilitates microbial recognition by phagocytes acting as an opsonin. Moreover, PTX3 has modulatory functions on innate immunity and inflammation. Here, we review the studies on PTX3 which emphasize the complexity and complementarity of the crosstalk between the cellular and humoral arms of innate immunity.
Asunto(s)
Proteínas de Fase Aguda/inmunología , Proteínas de Fase Aguda/metabolismo , Proteína C-Reactiva/inmunología , Proteína C-Reactiva/metabolismo , Inmunidad Celular , Inmunidad Innata , Componente Amiloide P Sérico/inmunología , Componente Amiloide P Sérico/metabolismo , Proteínas de Fase Aguda/química , Proteínas de Fase Aguda/genética , Animales , Infecciones Bacterianas/sangre , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/prevención & control , Proteína C-Reactiva/química , Proteína C-Reactiva/genética , Femenino , Humanos , Ratones , Neutrófilos/inmunología , Neutrófilos/metabolismo , Fagocitosis/inmunología , Receptores de Reconocimiento de Patrones/química , Receptores de Reconocimiento de Patrones/genética , Receptores de Reconocimiento de Patrones/inmunología , Receptores de Reconocimiento de Patrones/metabolismo , Componente Amiloide P Sérico/química , Componente Amiloide P Sérico/genéticaRESUMEN
Toll interleukin-1 receptor (IL-1R) 8 (TIR8), also known as single Ig IL-1 receptor (IL-R)-related molecule, or SIGIRR, is a member of the IL-1R-like family, primarily expressed by epithelial cells. Current evidence suggests that TIR8 plays a nonredundant role as a negative regulator in vivo under different inflammatory conditions that are dependent on IL-R and Toll-like receptor (TLR) activation. In the present study, we examined the role of TIR8 in innate resistance to acute lung infections caused by Pseudomonas aeruginosa, a Gram-negative pathogen responsible for life-threatening infections in immunocompromised individuals and cystic fibrosis patients. We show that Tir8 deficiency in mice was associated with increased susceptibility to acute P. aeruginosa infection, in terms of mortality and bacterial load, and to exacerbated local and systemic production of proinflammatory cytokines (gamma interferon [IFN-γ], tumor necrosis factor alpha [TNF-α], IL-1ß, and IL-6) and chemokines (CXCL1, CXCL2, and CCL2). It has been reported that host defense against P. aeruginosa acute lung infection can be improved by blocking IL-1 since exaggerated IL-1ß production may be harmful for the host in this infection. In agreement with these data, IL-1RI deficiency rescues the phenotype observed in Tir8-deficient mice: in Tir8-/- IL-1RI-/- double knockout mice we observed higher survival rates, enhanced bacterial clearance, and reduced levels of local and systemic cytokine and chemokine levels than in Tir8-deficient mice. These results suggest that TIR8 has a nonredundant effect in modulating the inflammation caused by P. aeruginosa, in particular, by negatively regulating IL-1RI signaling, which plays a major role in the pathogenesis of this infectious disease.
Asunto(s)
Neumonía Bacteriana/inmunología , Infecciones por Pseudomonas/inmunología , Pseudomonas aeruginosa/inmunología , Receptores de Interleucina-1/metabolismo , Animales , Carga Bacteriana , Citocinas/metabolismo , Histocitoquímica , Pulmón/microbiología , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neumonía Bacteriana/mortalidad , Infecciones por Pseudomonas/mortalidad , Transducción de Señal , Análisis de SupervivenciaRESUMEN
Pentraxin 3 (PTX3) is a soluble pattern recognition molecule playing a nonredundant role in resistance against Aspergillus fumigatus. The present study was designed to investigate the molecular pathways involved in the opsonic activity of PTX3. The PTX3 N-terminal domain was responsible for conidia recognition, but the full-length molecule was necessary for opsonic activity. The PTX3-dependent pathway of enhanced neutrophil phagocytic activity involved complement activation via the alternative pathway; Fcγ receptor (FcγR) IIA/CD32 recognition of PTX3-sensitized conidia and complement receptor 3 (CR3) activation; and CR3 and CD32 localization to the phagocytic cup. Gene targeted mice (ptx3, FcR common γ chain, C3, C1q) validated the in vivo relevance of the pathway. In particular, the protective activity of exogenous PTX3 against A fumigatus was abolished in FcR common γ chain-deficient mice. Thus, the opsonic and antifungal activity of PTX3 is at the crossroad between complement, complement receptor 3-, and FcγR-mediated recognition. Because short pentraxins (eg, C-reactive protein) interact with complement and FcγR, the present results may have general significance for the mode of action of these components of the humoral arm of innate immunity.
Asunto(s)
Aspergillus fumigatus/inmunología , Proteína C-Reactiva/inmunología , Proteínas del Tejido Nervioso/inmunología , Receptores de Complemento/inmunología , Receptores de IgG/inmunología , Animales , Activación de Complemento/inmunología , Inmunidad Innata , Antígeno de Macrófago-1/inmunología , Ratones , Ratones Mutantes , Proteínas Opsoninas/inmunología , Receptores de Reconocimiento de Patrones , Transducción de Señal/inmunologíaRESUMEN
Group 1 innate lymphoid cells (ILCs), which comprise both natural killer (NK) cells and ILC1s, are important innate effectors that can also positively and negatively influence adaptive immune responses. The latter function is generally ascribed to the ability of NK cells to recognize and kill activated T cells. Here, we used multiphoton intravital microscopy in mouse models of hepatitis B to study the intrahepatic behavior of group 1 ILCs and their cross-talk with hepatitis B virus (HBV)-specific CD8+ T cells. We found that hepatocellular antigen recognition by effector CD8+ T cells triggered a prominent increase in the number of hepatic NK cells and ILC1s. Group 1 ILCs colocalized and engaged in prolonged interactions with effector CD8+ T cells undergoing hepatocellular antigen recognition; however, they did not induce T cell apoptosis. Rather, group 1 ILCs constrained CD8+ T cell proliferation by controlling local interleukin-2 (IL-2) availability. Accordingly, group 1 ILC depletion, or genetic removal of their IL-2 receptor a chain, considerably increased the number of intrahepatic HBV-specific effector CD8+ T cells and the attendant immunopathology. Together, these results reveal a role for group 1 ILCs in controlling T cell-mediated liver immunopathology by limiting local IL-2 concentration and have implications for the treatment of chronic HBV infection.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Inmunidad Innata/inmunología , Interleucina-2/inmunología , Linfocitos/inmunología , Animales , Células Asesinas Naturales/inmunología , Ratones , Ratones Congénicos , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones TransgénicosRESUMEN
Innate immunity represents the first line of defence against pathogens and plays key roles in activation and orientation of the adaptive immune response. The innate immune system comprises both a cellular and a humoral arm. Components of the humoral arm include soluble pattern recognition molecules (PRMs) that recognise pathogen-associated molecular patterns (PAMPs) and initiate the immune response in coordination with the cellular arm, therefore acting as functional ancestors of antibodies. The long pentraxin PTX3 is a prototypic soluble PRM that is produced at sites of infection and inflammation by both somatic and immune cells. Gene targeting of this evolutionarily conserved protein has revealed a nonredundant role in resistance to selected pathogens. Moreover, PTX3 exerts important functions at the cross-road between innate immunity, inflammation, and female fertility. Here, we review the studies on PTX3, with emphasis on pathogen recognition and cross-talk with other components of the innate immune system.
Asunto(s)
Proteína C-Reactiva/inmunología , Interacciones Huésped-Patógeno/inmunología , Inmunidad Humoral/inmunología , Infecciones/inmunología , Inflamación/inmunología , Componente Amiloide P Sérico/inmunología , Proteína C-Reactiva/genética , Femenino , Fertilidad/genética , Fertilidad/inmunología , Humanos , Inmunidad Humoral/genética , Inmunidad Innata , Infecciones/genética , Inflamación/genética , Componente Amiloide P Sérico/genéticaRESUMEN
BACKGROUND: Immune responses participate in several phases of atherosclerosis; there is, in fact, increasing evidence that both adaptive immunity and innate immunity tightly regulate atherogenesis. Pentraxins are a superfamily of acute-phase proteins that includes short pentraxins such as C-reactive protein or long pentraxins such as PTX3, a molecule acting as the humoral arm of innate immunity. To address the potential role of PTX3 in atherogenesis, we first investigated the expression of PTX3 during atherogenesis, generated double-knockout mice lacking PTX3 and apolipoprotein E, and then studied the effect of murine PTX3 deficiency on plasma lipids, atherosclerosis development, and gene expression pattern in the vascular wall. METHODS AND RESULTS: PTX3 expression increases in the vascular wall of apolipoprotein E-knockout mice from 3 up to 18 months of age. Double-knockout mice lacking PTX3 and apolipoprotein E were fed an atherogenic diet for 16 weeks. Aortic lesions were significantly increased in double-knockout mice and mice heterozygous for PTX3 compared with apolipoprotein E-knockout mice. Mice lacking PTX3 showed a more pronounced inflammatory profile in the vascular wall as detected by cDNA microarray and quantitative polymerase chain reaction analysis and an increased macrophage accumulation within the plaque. Finally, lesion size correlated with the number of bone marrow monocytes. CONCLUSIONS: PTX3 has atheroprotective effects in mice, which, in light of the cardioprotective effects recently reported, suggests a cardiovascular protective function of the long pentraxin 3 through the modulation of the immunoinflammatory balance in the cardiovascular system.