Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Phys Rev Lett ; 132(22): 226705, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38877898

RESUMEN

Hedgehog and antihedgehog spin textures in magnets behave as emergent monopoles and antimonopoles, which give rise to astonishing transport and electromagnetic phenomena. Using the Kondo-lattice model in three dimensions, we theoretically study collective spin-wave excitation modes of magnetic hedgehog lattices which have recently been discovered in itinerant magnets such as MnSi_{1-x}Ge_{x} and SrFeO_{3}. It is revealed that the spin-wave modes, which appear in the subterahertz regime, have dominant amplitudes localized at Dirac strings connecting hedgehog-antihedgehog pairs and are characterized by their translational oscillations. It is found that their spectral features sensitively depend on the number and configuration of the Dirac strings and, thus, can be exploited for identifying the topological phase transitions associated with the monopole-antimonopole pair annihilations.

2.
Phys Rev Lett ; 132(19): 193601, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38804949

RESUMEN

Coherent and dissipative interactions between different quantum systems are essential for the construction of hybrid quantum systems and the investigation of novel quantum phenomena. Here, we propose and analyze a magnon-skyrmion hybrid quantum system, consisting of a micromagnet and nearby magnetic skyrmions. We predict a strong-coupling mechanism between the magnonic mode of the micromagnet and the quantized helicity degree of freedom of the skyrmion. We show that with this hybrid setup it is possible to induce magnon-mediated nonreciprocal interactions and responses between distant skyrmion qubits or between skyrmion qubits and other quantum systems like superconducting qubits. This work provides a quantum platform for the investigation of diverse quantum effects and quantum information processing with magnetic microstructures.

3.
Nano Lett ; 23(24): 11793-11801, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38055779

RESUMEN

The chiral nature of active matter plays an important role in the dynamics of active matter interacting with chiral structures. Skyrmions are chiral objects, and their interactions with chiral nanostructures can lead to intriguing phenomena. Here, we explore the random-walk dynamics of a thermally activated chiral skyrmion interacting with a chiral flower-like obstacle in a ferromagnetic layer, which could create topology-dependent outcomes. It is a spontaneous mesoscopic order-from-disorder phenomenon driven by the thermal fluctuations and topological nature of skyrmions that exists only in ferromagnetic and ferrimagnetic systems. The interactions between the skyrmions and chiral flowers at finite temperatures can be utilized to control the skyrmion position and distribution without applying any external driving force or temperature gradient. The phenomenon that thermally activated skyrmions are dynamically coupled to chiral flowers may provide a new way to design topological sorting devices.

4.
Phys Rev Lett ; 129(4): 047402, 2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35939024

RESUMEN

We study photoinduced phase transitions and charge dynamics in the interacting Dirac-electron system with a charge-ordered ground state theoretically by taking an organic salt α-(BEDT-TTF)_{2}I_{3}. By analyzing the extended Hubbard model for this compound using a combined method of numerical simulations based on the time-dependent Schrödinger equation and the Floquet theory, we observe successive dynamical phase transitions from the charge-ordered insulator to a gapless Dirac semimetal and, eventually, to a Chern insulator phase under irradiation with circularly polarized light. These phase transitions occur as a consequence of two major effects of circularly polarized light, i.e., closing of the charge gap through melting the charge order and opening of the topological gap by breaking the time-reversal symmetry at the Dirac points. We demonstrate that these photoinduced phenomena are governed by charge dynamics of driven correlated Dirac electrons.

5.
Phys Rev Lett ; 129(1): 017201, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35841562

RESUMEN

We theoretically study spin and charge excitations of skyrmion crystals stabilized by conduction-electron-mediated magnetic interactions via spin-charge coupling in a centrosymmetric Kondo-lattice model by large-scale spin-dynamics simulations combined with the kernel polynomial method. We reveal clear segregation of spin and charge excitation channels and nonreciprocal nature of the spin excitations governed by the Fermi-surface geometry, which are unique to the skyrmion crystals in centrosymmetric itinerant hosts and can be a source of novel physical phenomena.

6.
Nat Mater ; 23(7): 872-873, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38956346
7.
Phys Chem Chem Phys ; 18(21): 14454-9, 2016 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-27174015

RESUMEN

The coating of solid-binding peptides (SBPs) on inorganic material surfaces holds significant potential for improved surface functionalization at nano-bio interfaces. In most related studies, the goal has been to engineer peptides with selective and high binding affinity for a target material. The role of the material substrate itself in modulating the adsorption behavior of a peptide molecule remains less explored and there are few studies that compare the interaction of one peptide with different inorganic substrates. Herein, using a combination of two experimental techniques, we investigated the adsorption of a 16 amino acid-long random coil peptide to various inorganic substrates - gold, silicon oxide, titanium oxide and aluminum oxide. Quartz crystal microbalance-dissipation (QCM-D) experiments were performed in order to measure the peptide binding affinity for inorganic solid supports at the ensemble average level, and atomic force microscopy (AFM) experiments were conducted in order to determine the adhesion force of a single peptide molecule. A positive trend was observed between the total mass uptake of attached peptide and the single-molecule adhesion force on each substrate. Peptide affinity for gold was appreciably greater than for the oxide substrates. Collectively, the results obtained in this study offer insight into the ways in which inorganic materials can differentially influence and modulate the adhesion of SBPs.


Asunto(s)
Compuestos Inorgánicos/química , Péptidos/química , Adsorción , Óxido de Aluminio/química , Secuencia de Aminoácidos , Oro/química , Microscopía de Fuerza Atómica , Péptidos/metabolismo , Tecnicas de Microbalanza del Cristal de Cuarzo , Silicio/química , Propiedades de Superficie , Titanio/química
8.
Phys Rev Lett ; 114(19): 197203, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-26024194

RESUMEN

We theoretically find that in the multiferroic chiral magnet Cu_{2}OSeO_{3} resonant magnetic excitations are coupled to the collective oscillation of the electric polarization, and thereby attain simultaneous activity to the ac magnetic field and ac electric field. Because of the interference between these magnetic and electric activation processes, this material hosts a gigantic magnetochiral dichroism for microwaves, that is, a directional dichroism at gigahertz frequencies in the Faraday geometry. The absorption intensity of a microwave differs by as much as ~30% depending on whether its propagation direction is parallel or antiparallel to the external magnetic field.

9.
Langmuir ; 31(29): 8006-12, 2015 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-26125092

RESUMEN

Peptide coatings on material surfaces have demonstrated wide application across materials science and biotechnology, facilitating the development of nanobio interfaces through surface modification. A guiding motivation in the field is to engineer peptides with a high and selective binding affinity to target materials. Herein, we introduce a quantitative force mapping method in order to evaluate the binding affinity of peptides to various hydrophilic oxide materials by atomic force microscopy (AFM). Statistical analysis of adhesion forces and probabilities obtained on substrates with a materials contrast enabled us to simultaneously compare the peptide binding affinity to different materials. On the basis of the experimental results and corresponding theoretical analysis, we discuss the role of various interfacial forces in modulating the strength of peptide attachment to hydrophilic oxide solid supports as well as to gold. The results emphasize the precision and robustness of our approach to evaluating the adhesion strength of peptides to solid supports, thereby offering guidelines to improve the design and fabrication of peptide-coated materials.


Asunto(s)
Péptidos/química , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía de Fuerza Atómica
10.
Adv Mater ; 36(1): e2306441, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37712832

RESUMEN

The spontaneous formation and topological transitions of vortex-antivortex pairs have implications for a broad range of emergent phenomena, for example, from superconductivity to quantum computing. Unlike magnets exhibiting collinear spin textures, helimagnets with noncollinear spin textures provide unique opportunities to manipulate topological forms such as (anti)merons and (anti)skyrmions. However, it is challenging to achieve multiple topological states and their interconversion in a single helimagnet due to the topological protection for each state. Here, the on-demand creation of multiple topological states in a helimagnet Fe0.5 Co0.5 Ge, including a spontaneous vortex pair of meron with topological charge N = -1/2 and antimeron with N = 1/2, and a vortex-antivortex bundle, that is, a bimeron (meron pair) with N = -1 is reported. The mutual transformation between skyrmions and bimerons with respect to the competitive effects of magnetic field and magnetic shape anisotropy is demonstrated. It is shown that electric currents drive the individual bimerons to form their connecting assembly and then into a skyrmion lattice. These findings signify the feasibility of designing topological states and offer new insights into the manipulation of noncollinear spin textures for potential applications in various fields.

11.
Nat Commun ; 15(1): 7701, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39227610

RESUMEN

Current-driven dynamics of topological spin textures, such as skyrmions and antiskyrmions, have garnered considerable attention in condensed matter physics and spintronics. As compared with skyrmions, the current-driven dynamics of their antiparticles - antiskyrmions - remain less explored due to the increased complexity of antiskyrmions. Here, we design and employ fabricated microdevices of a prototypical antiskyrmion host, (Fe0.63Ni0.3Pd0.07)3P, to allow in situ current application with Lorentz transmission electron microscopy observations. The experimental results and related micromagnetic simulations demonstrate current-driven antiskyrmion dynamics confined within stripe domains. Under nanosecond-long current pulses, antiskyrmions exhibit directional motion along the stripe regardless of the current direction, while the antiskyrmion velocity is linearly proportional to the current density. Significantly, the antiskyrmion mobility could be enhanced when the current flow is perpendicular to the stripe direction. Our findings provide novel and reliable insights on dynamical antiskyrmions and their potential implications on spintronics.

12.
Sci Rep ; 13(1): 19423, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37940652

RESUMEN

By performing numerical simulations for the handwritten digit recognition task, we demonstrate that a magnetic skyrmion lattice confined in a thin-plate magnet possesses high capability of reservoir computing. We obtain a high recognition rate of more than 88%, higher by about 10% than a baseline taken as the echo state network model. We find that this excellent performance arises from enhanced nonlinearity in the transformation which maps the input data onto an information space with higher dimensions, carried by interferences of spin waves in the skyrmion lattice. Because the skyrmions require only application of static magnetic field instead of nanofabrication for their creation in contrast to other spintronics reservoirs, our result consolidates the high potential of skyrmions for application to reservoir computing devices.

13.
Phys Rev Lett ; 108(1): 017601, 2012 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-22304290

RESUMEN

We theoretically study spin-wave modes and their intense excitations activated by microwave magnetic fields in the Skyrmion-crystal phase of insulating magnets by numerically analyzing a two-dimensional spin model using the Landau-Lifshitz-Gilbert equation. Two peaks of spin-wave resonances with frequencies of ∼1 GHz are found for in-plane ac magnetic field where distribution of the out-of-plane spin components circulates around each Skyrmion core. Directions of the circulations are opposite between these two modes, and hence the spectra exhibit a salient dependence on the circular polarization of irradiating microwave. A breathing-type mode is also found for an out-of-plane ac magnetic field. By intensively exciting these collective modes, melting of the Skyrmion crystal accompanied by a redshift of the resonant frequency is achieved within nanoseconds.

14.
Phys Rev Lett ; 105(14): 147202, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-21230863

RESUMEN

We show theoretically with an accurate spin Hamiltonian describing the multiferroic Mn perovskites that the application of the picosecond optical pulse with a terahertz frequency can switch the spin chirality through intensely exciting the electromagnons. There are four states with different spin chiralities, i.e., clockwise and counterclockwise ab/bc-plane spin spirals, and by tuning the strength, shape and length of the pulse, the switching among these states can be controlled at will. Dynamical pattern formation during the switching is also discussed.

15.
Phys Rev Lett ; 105(18): 187601, 2010 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-21231137

RESUMEN

We propose a microscopic theory for magnetic switching of electric polarization (P) in the spin-spiral multiferroics by taking TbMnO3 and DyMnO3 as examples. We reproduce their phase diagrams under a magnetic field Hex by Monte Carlo simulation of an accurate spin model and reveal that competition among the Dzyaloshinskii-Moriya interaction, spin anisotropy, and spin exchange is controlled by the applied Hex, resulting in magnetic transitions accompanied by reorientation or vanishing of P. We also discuss the relevance of the proposed mechanisms to many other multiferroics such as LiCu2O2, MnWO4, and Ni3V2O4.

16.
Phys Rev Lett ; 105(3): 037205, 2010 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-20867801

RESUMEN

We theoretically study origins of the ferroelectricity in the multiferroic phases of the rare-earth (R) Mn perovskites, RMnO(3), by constructing a realistic spin model including the spin-phonon coupling, which reproduces the entire experimental phase diagram in the plane of temperature and Mn-O-Mn bond angle for the first time. Surprisingly we reveal a significant contribution of the symmetric (S·S)-type magnetostriction to the ferroelectricity even in a spin-spiral-based multiferroic phase, which can be larger than the usually expected antisymmetric (S×S)-type contribution. This explains well the nontrivial behavior of the electric polarization. We also predict the noncollinear deformation of the E-type spin structure and a wide coexisting regime of the E and spiral states, which resolve several experimental puzzles.

17.
Phys Rev Lett ; 104(17): 177206, 2010 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-20482138

RESUMEN

We study theoretically the electromagnon and its optical spectrum (OS) of the terahertz-frequency regime in the magnetic-spiral-induced multiferroic phases of the rare-earth-metal (R) Mn perovskites, RMnO3, taking into account the spin-angle modulation or the higher harmonics of the spiral spin configuration, which has been missed so far. A realistic spin Hamiltonian, which gives phase diagrams in agreement with experiments, resolves a puzzle, i.e., the double-peak structure of the OS with a larger low-energy peak originating from magnon modes hybridized with the zone-edge state. We also predict the magnon branches associated with the electromagnon, which can be tested by neutron-scattering experiment.

18.
Sci Rep ; 9(1): 9528, 2019 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-31267000

RESUMEN

Efficient control of magnetism with electric means is a central issue of current spintronics research, which opens an opportunity to design integrated spintronic devices. However, recent well-studied methods are mostly based on electric-current injection, and they are inevitably accompanied by considerable energy losses through Joule heating. Here we theoretically propose a way to exert spin torques into magnetic bilayer systems by application of electric voltages through taking advantage of the Rashba spin-orbit interaction. The torques resemble the well-known electric-current-induced torques, providing similar controllability of magnetism but without Joule-heating energy losses. The torques also turn out to work as an interfacial Dzyaloshinskii-Moriya interaction which enables us to activate and create noncollinear magnetism like skyrmions by electric-voltage application. Our proposal offers an efficient technique to manipulate magnetizations in spintronics devices without Joule-heating energy losses.

19.
RSC Adv ; 9(41): 23973-23978, 2019 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35530627

RESUMEN

Raman spectroscopic measurements and theoretical calculation revealed that the Raman bands corresponding to the B-H stretching vibrations of two types of simple icosahedral boron clusters, ortho-carborane 3 and closo-dodecaborate 4 appeared at approximately 2450-2700 cm-1, and did not overlap with those of cellular components. Although ortho-carborane 3 possesses a possible property as a Raman probe, it was difficult to measure Raman imaging in the cell due to its poor water solubility. In fact, ortho-carborane derivative 6, which internally has an alkyne moiety, exhibited very weak Raman signals of the C[triple bond, length as m-dash]C stretching and the B-H stretching vibrations were barely detected at a 400 ppm boron concentration in HeLa cells. In contrast, closo-dodecaborate derivatives such as BSH (5) were found to be a potential Raman imaging probe cluster for target molecules in the cell. BSH-conjugated cholesterol 7 (BSH-Chol) was synthesized and used in Raman imaging in cells. Raman imaging and spectral analysis revealed that BSH-based Raman tags provide a versatile platform for quantitative Raman imaging.

20.
Nanoscale ; 9(30): 10715-10720, 2017 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-28681893

RESUMEN

We report a method to establish experimental conditions for tip-enhanced Raman spectroscopy (TERS) with low thermal and mechanical damage to samples. In this method, we monitor the thermal desorption of thiol molecules from a gold-coated probe of an atomic force microscope (AFM) via TERS spectra. Temperatures for desorption of thiol molecules (60-100 °C) from gold surfaces cover the temperature range for degradation of heat-sensitive biomaterials (e.g. proteins). By monitoring the desorption of the thiols on the probe, we can estimate the power of an excitation laser for the samples to reach their critical temperatures for thermal degradation. Furthermore, we also found that an active oscillation of AFM cantilevers significantly promotes the heat transfer from the probe to the surrounding medium. This enables us to employ a higher power density of the excitation laser, resulting in a stronger Raman signal compared with the signal obtained with a contact mode. We propose that this combinatory method is effective in acquiring strong TERS signals while suppressing thermal and mechanical damage to soft and heat-sensitive samples.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA