Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Foods ; 12(6)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36981150

RESUMEN

Gibberellic acid (GA3) is a well-known plant growth regulator used in several countries, but its widespread use has negative effects on both animal and human health. The current study assesses the protective effect of royal jelly (RJ) and Chlorella vulgaris (CV) on the genotoxicity and hepatic injury induced by GA3 in rats. Daily oral administration of 55 mg/kg GA3 to rats for 6 constitutive weeks induced biochemical and histopathological changes in the liver via oxidative stress and inflammation. Co-administration of 300 mg/kg RJ or 500 mg/kg CV with GA3 considerably ameliorated the serum levels of AST (aspartate aminotransferase), ALT (alanine aminotransferase), ALP (alkaline phosphatase), γGT (gamma-glutamyl transferase), total bilirubin, and albumin. Lowered malondialdehyde, tumor necrosis factor α (TNF-α), and nuclear factor κB (NF-κB) levels along with elevated SOD (superoxide dismutase), CAT (catalase), and GPx (glutathione peroxidase) enzyme activities indicated the antioxidant and anti-inflammatory properties of both RJ and CV. Also, they improved the histological structure and reduced cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expressions along with up-regulating peroxisome proliferator activated receptor α (PPARα) and down-regulating activator protein 1 (AP-1) gene expression. Additionally, chromosomal abnormalities and mitotic index were nearly normalized after treatment with RJ and CV. In conclusion, RJ and CV can protect against GA3-induced genotoxicity and liver toxicity by diminishing oxidative stress and inflammation, and modulating the PPARα/AP-1 signaling pathway.

2.
Biol Trace Elem Res ; 201(11): 5257-5271, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36790584

RESUMEN

Atrazine, as an herbicide, is used widely worldwide. Because of its prolonged persistence in the environment and accumulation in the body, atrazine exposure is a potential threat to human health. The present study evaluated the possible protective effects of zinc oxide nanoparticles and vitamin C against atrazine-induced hepatotoxicity in rats. Atrazine administered to rats orally at a dose of 300 mg/kg for 21 days caused liver oxidative stress as it increased malondialdehyde (MDA) formation and decreased reduced glutathione (GSH) contents. Atrazine induced inflammation accompanied by apoptosis via upregulation of hepatic gene expression levels of NF-κB, TNF-α, BAX, and caspase-3 and downregulation of Bcl-2 gene expression levels. Additionally, it disturbed the metabolic activities of cytochrome P450 as it downregulated hepatic gene expression levels of CYP1A1, CYP1B1, CYP2E1. The liver function biomarkers were greatly affected upon atrazine administration, and the serum levels of AST and ALT were significantly increased, while BWG%, albumin, globulins, and total proteins levels were markedly decreased. As a result of the above-mentioned influences of atrazine, histopathological changes in liver tissue were recorded in our findings. The administration of zinc oxide nanoparticles or vitamin C orally at a dose of 10 mg/kg and 200 mg/kg, respectively, for 30 days prior and along with atrazine, could significantly ameliorate the oxidative stress, inflammation, and apoptosis induced by atrazine and regulated the hepatic cytochrome P450 activities. Furthermore, they improved liver function biomarkers and histopathology. In conclusion, our results revealed that zinc oxide nanoparticles and vitamin C supplementations could effectively protect against atrazine-induced hepatotoxicity.


Asunto(s)
Atrazina , Enfermedad Hepática Inducida por Sustancias y Drogas , Nanopartículas , Óxido de Zinc , Humanos , Ratas , Animales , Óxido de Zinc/farmacología , Atrazina/toxicidad , Atrazina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ácido Ascórbico/farmacología , Ácido Ascórbico/metabolismo , Hígado/metabolismo , Antioxidantes/metabolismo , Estrés Oxidativo , Apoptosis , Vitaminas/farmacología , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Biomarcadores/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Inmunomodulación
3.
Int J Food Microbiol ; 371: 109667, 2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35447560

RESUMEN

A novel antimicrobial chitosan-gelatin based edible coating fortified with papaya leaves and thyme extract was prepared for improving the quality and shelf-life of chicken breast fillet and Kareish cheese during chilled storage at 4 ± 1 °C. The samples were dipped for 10 min in distilled water (control), chitosan-gelatin (CG), chitosan-gelatin +2% papaya leaves extract (CG + P) and chitosan-gelatin +2% thyme extract (CG + Th). The coated and uncoated samples were examined periodically for sensory attributes, pH, TBARs, total aerobic mesophilic (TAM), total Enterobacteriaceae (TE), and total yeasts and molds counts (TYM). Sensory evaluation revealed that chicken breast fillet and Kareish cheese samples coated with CG + P were the best in terms of tenderness, juiciness, body & texture and flavor. CG + Th exhibited the highest antimicrobial and antioxidant effect, followed by CG + P. The results of microbiological, physicochemical and sensory analysis of this study demonstrated that the application of CG + P or CG + Th could be a promising method for increasing the shelf life and improving the quality of chicken breast fillet and Kareish cheese.


Asunto(s)
Antiinfecciosos , Carica , Queso , Quitosano , Animales , Antiinfecciosos/farmacología , Queso/microbiología , Pollos , Quitosano/farmacología , Conservación de Alimentos/métodos , Gelatina , Extractos Vegetales , Hojas de la Planta , Thymus (Planta) , Verduras
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA