Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
iScience ; 23(10): 101630, 2020 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-33103072

RESUMEN

Understanding the mechanisms for cellular aging is a fundamental question in biology. Normal red blood cells (RBCs) survive for approximately 100 days, and their survival is likely limited by functional decline secondary to cumulative damage to cell constituents, which may be reflected in altered metabolic capabilities. To investigate metabolic changes during in vivo RBC aging, labeled cell populations were purified at intervals and assessed for abundance of metabolic intermediates using mass spectrometry. A total of 167 metabolites were profiled and quantified from cell populations of defined ages. Older RBCs maintained ATP and redox charge states at the cost of altered activity of enzymatic pathways. Time-dependent changes were identified in metabolites related to maintenance of the redox state and membrane structure. These findings illuminate the differential metabolic pathway usage associated with normal cellular aging and identify potential biomarkers to determine average RBC age and rates of RBC turnover from a single blood sample.

2.
Diabetes ; 62(12): 4270-6, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23884885

RESUMEN

Using a nontargeted metabolomics approach of 447 fasting plasma metabolites, we searched for novel molecular markers that arise before and after hyperglycemia in a large population-based cohort of 2,204 females (115 type 2 diabetic [T2D] case subjects, 192 individuals with impaired fasting glucose [IFG], and 1,897 control subjects) from TwinsUK. Forty-two metabolites from three major fuel sources (carbohydrates, lipids, and proteins) were found to significantly correlate with T2D after adjusting for multiple testing; of these, 22 were previously reported as associated with T2D or insulin resistance. Fourteen metabolites were found to be associated with IFG. Among the metabolites identified, the branched-chain keto-acid metabolite 3-methyl-2-oxovalerate was the strongest predictive biomarker for IFG after glucose (odds ratio [OR] 1.65 [95% CI 1.39-1.95], P = 8.46 × 10(-9)) and was moderately heritable (h(2) = 0.20). The association was replicated in an independent population (n = 720, OR 1.68 [ 1.34-2.11], P = 6.52 × 10(-6)) and validated in 189 twins with urine metabolomics taken at the same time as plasma (OR 1.87 [1.27-2.75], P = 1 × 10(-3)). Results confirm an important role for catabolism of branched-chain amino acids in T2D and IFG. In conclusion, this T2D-IFG biomarker study has surveyed the broadest panel of nontargeted metabolites to date, revealing both novel and known associated metabolites and providing potential novel targets for clinical prediction and a deeper understanding of causal mechanisms.


Asunto(s)
Biomarcadores/sangre , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/sangre , Hiperglucemia/sangre , Estado Prediabético/sangre , Anciano , Glucemia/genética , Diabetes Mellitus Tipo 2/genética , Enfermedades en Gemelos/sangre , Enfermedades en Gemelos/genética , Ayuno , Femenino , Estudio de Asociación del Genoma Completo , Prueba de Tolerancia a la Glucosa , Humanos , Hiperglucemia/genética , Masculino , Metabolómica , Persona de Mediana Edad , Estado Prediabético/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA