Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Front Mol Neurosci ; 16: 1313635, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38098941

RESUMEN

Traumatic stress has been shown to contribute to persistent behavioral changes, yet the underlying neural pathways are not fully explored. Structural plasticity, a form of long-lasting neural adaptability, offers a plausible mechanism. To scrutinize this, we used the mGRASP imaging technique to visualize synaptic modifications in a pathway formed between neurons of the posterior ventral segment of the medial amygdala and ventrolateral segment of the ventromedial hypothalamus (MeApv-VmHvl), areas we previously showed to be involved in stress-induced excessive aggression. We subjected mice (7-8 weeks of age) to acute stress through foot shocks, a reliable and reproducible form of traumatic stress, and compared synaptic changes to control animals. Our data revealed an increase in synapse formation within the MeApv-VmHvl pathway post-stress as evidenced by an increase in mGRASP puncta and area. Chemogenetic inhibition of CaMKIIα-expressing neurons in the MeApv during the stressor led to reduced synapse formation, suggesting that the structural changes were driven by excitatory activity. To elucidate the molecular mechanisms, we administered the NMDAR antagonist MK-801, which effectively blocked the stress-induced synaptic changes. These findings suggest a strong link between traumatic stress and enduring structural changes in an MeApv-VmHvl neural pathway. Furthermore, our data point to NMDAR-dependent mechanisms as key contributors to these synaptic changes. This structural plasticity could offer insights into persistent behavioral consequences of traumatic stress, such as symptoms of PTSD and social deficits.

2.
J Arthropod Borne Dis ; 17(2): 152-164, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37822757

RESUMEN

Background: Understanding the microbiota of disease vectors can help for developing new strategies to prevent the transmission of vector pathogens. Ixodes ricinus is one of the most notorious tick vectors with increasing importance in Iran and other parts of the world while there is limited data on its microbiota. This study aimed to use metagenomics for identifying the I. ricinus tick's microbiota of Iran. Methods: A total of 39 adult ticks were collected from Mazandaran (21 females), Gilan (17 females), and Golestan (1 male). Five tick pools prepared from 39 adults of I. ricinus were subjected to metagenomics analysis. The data were analyzed by targeting the V6 region of the 16S rRNA gene by Illumina 4000 Hiseq sequencing. Results: Among hundreds of intestinal microbiota identified by metagenomics, various pathogenic microorganisms distributed in 30 genera and species including those responsible for tick-borne diseases resided in the genera Coxiella, Rickettsia, and Burkholderia were found. Conclusion: Our results indicated that metagenomics identifies bacteria genera and species which cannot be easily recognized by routine methods. The presence of such pathogenic bacteria indicates the importance of possible zoonotic diseases in this region which could affect public health. These results further substantiate the importance of advanced metagenomics analyses to identify neglected tick-borne pathogens which enable researchers to provide efficient mapping roads for the management of emerging and re-emerging infectious diseases.

3.
Iran J Public Health ; 51(7): 1494-1501, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36248293

RESUMEN

SARS-COV-2 (COVID-19) the virus that caused an epidemic of sever acute respiratory syndrome is what the world has been dealing with since Dec 2019. As the pandemic continues different variants that emerge during mutations have become the latest concern, with notable examples detected in South Africa, Brazil, and UK. Variants are complicated and each one is a collection of several mutations, all of which have the potential to change the virus in unexpected ways. Studying variants is imperative as they can lead the epidemic to the increase of population immunity. In the present study, we reviewed key mutations and concerning variants according to the WHO tracking Sars-Cov-2 program. Databases were searched through Feb to Mar 2022. Overall, 477 studies were extracted from databases, among them 165 studies included mutations, 239 included COVID-19 variants and 43 included both mutations and variants. At the final step of data screening 24 studies associated to mutations, 31 studies with the highlighted information on COVID-19 variants and 31 studies related to both mutations and variants were extracted for this review article. In conclusion, analyses of the genomic sequence of SARS-CoV-2 indicate that structural proteins are key molecules in the assembly of virus while NSPs can have different biochemical properties and possibly cellular functions.

4.
Iran J Public Health ; 51(12): 2664-2673, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36742229

RESUMEN

Background: Climate change based on temperature, humidity and wind can improve many characteristics of the arthropod carrier life cycle, including survival, arthropod population, pathogen communication, and the spread of infectious agents from vectors. This study aimed to find association between content of disease followed climate change we demonstrate in humans. Methods: All the articles from 2016 to 2021 associated with global climate change and the effect of vector-borne disease were selected form databases including PubMed and the Global Biodiversity information facility database. All the articles selected for this short review were English. Results: Due to the high burden of infectious diseases and the growing evidence of the possible effects of climate change on the incidence of these diseases, these climate changes can potentially be involved with the COVID-19 epidemic. We highlighted the evidence of vector-borne diseases and the possible effects of climate change on these communicable diseases. Conclusion: Climate change, specifically in rising temperature system is one of the world's greatest concerns already affected pathogen-vector and host relation. Lice parasitic, fleas, mites, ticks, and mosquitos are the prime public health importance in the transmission of virus to human hosts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA