Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cancer Res ; 81(15): 4066-4078, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34183356

RESUMEN

One-carbon (1C) metabolism has a key role in metabolic programming with both mitochondrial (m1C) and cytoplasmic (c1C) components. Here we show that activating transcription factor 4 (ATF4) exclusively activates gene expression involved in m1C, but not the c1C cycle in prostate cancer cells. This includes activation of methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) expression, the central player in the m1C cycle. Consistent with the key role of m1C cycle in prostate cancer, MTHFD2 knockdown inhibited prostate cancer cell growth, prostatosphere formation, and growth of patient-derived xenograft organoids. In addition, therapeutic silencing of MTHFD2 by systemically administered nanoliposomal siRNA profoundly inhibited tumor growth in preclinical prostate cancer mouse models. Consistently, MTHFD2 expression is significantly increased in human prostate cancer, and a gene expression signature based on the m1C cycle has significant prognostic value. Furthermore, MTHFD2 expression is coordinately regulated by ATF4 and the oncoprotein c-MYC, which has been implicated in prostate cancer. These data suggest that the m1C cycle is essential for prostate cancer progression and may serve as a novel biomarker and therapeutic target. SIGNIFICANCE: These findings demonstrate that the mitochondrial, but not cytoplasmic, one-carbon cycle has a key role in prostate cancer cell growth and survival and may serve as a biomarker and/or therapeutic target.


Asunto(s)
Ciclo del Carbono/genética , Neoplasias de la Próstata/genética , Animales , Línea Celular Tumoral , Proliferación Celular , Progresión de la Enfermedad , Humanos , Masculino , Ratones , Ratones Desnudos
2.
Oncogene ; 38(35): 6301-6318, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31312022

RESUMEN

Cancer cells exploit many of the cellular adaptive responses to support their survival needs. One such critical pathway in eukaryotic cells is the unfolded protein response (UPR) that is important in normal physiology as well as disease states, including cancer. Since UPR can serve as a lever between survival and death, regulated control of its activity is critical for tumor formation and growth although the underlying mechanisms are poorly understood. Here we show that one of the main transcriptional effectors of UPR, activating transcription factor 4 (ATF4), is essential for prostate cancer (PCa) growth and survival. Using systemic unbiased gene expression and proteomic analyses, we identified a novel direct ATF4 target gene, family with sequence similarity 129 member A (FAM129A), which is critical in mediating ATF4 effects on prostate tumorigenesis. Interestingly, FAM129A regulated both PERK and eIF2α in a feedback loop that differentially channeled the UPR output. ATF4 and FAM129A protein expression is increased in patient PCa samples compared with benign prostate. Importantly, in vivo therapeutic silencing of ATF4-FAM129A axis profoundly inhibited tumor growth in a preclinical PCa model. These data support that one of the canonical UPR branches, through ATF4 and its target gene FAM129A, is required for PCa growth and thus may serve as a novel therapeutic target.


Asunto(s)
Factor de Transcripción Activador 4/fisiología , Biomarcadores de Tumor/fisiología , Proteínas de Neoplasias/fisiología , Neoplasias de la Próstata/metabolismo , Respuesta de Proteína Desplegada/genética , Animales , Proliferación Celular/genética , Estrés del Retículo Endoplásmico/genética , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Masculino , Ratones , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Transducción de Señal/genética , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA