Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cell ; 147(7): 1484-97, 2011 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-22196726

RESUMEN

Messenger RNA decay measurements are typically performed on a population of cells. However, this approach cannot reveal sufficient complexity to provide information on mechanisms that may regulate mRNA degradation, possibly on short timescales. To address this deficiency, we measured cell cycle-regulated decay in single yeast cells using single-molecule FISH. We found that two genes responsible for mitotic progression, SWI5 and CLB2, exhibit a mitosis-dependent mRNA stability switch. Their transcripts are stable until mitosis, when a precipitous decay eliminates the mRNA complement, preventing carryover into the next cycle. Remarkably, the specificity and timing of decay is entirely regulated by their promoter, independent of specific cis mRNA sequences. The mitotic exit network protein Dbf2p binds to SWI5 and CLB2 mRNAs cotranscriptionally and regulates their decay. This work reveals the promoter-dependent control of mRNA stability, a regulatory mechanism that could be employed by a variety of mRNAs and organisms.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Regiones Promotoras Genéticas , Estabilidad del ARN , Saccharomyces cerevisiae/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Ciclina B/genética , Hibridación Fluorescente in Situ , Cinética , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Transcripción Genética
2.
Genes Dev ; 30(24): 2710-2723, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-28087715

RESUMEN

Mutations in the U2 snRNP component SF3B1 are prominent in myelodysplastic syndromes (MDSs) and other cancers and have been shown recently to alter branch site (BS) or 3' splice site selection in splicing. However, the molecular mechanism of altered splicing is not known. We show here that hsh155 mutant alleles in Saccharomyces cerevisiae, counterparts of SF3B1 mutations frequently found in cancers, specifically change splicing of suboptimal BS pre-mRNA substrates. We found that Hsh155p interacts directly with Prp5p, the first ATPase that acts during spliceosome assembly, and localized the interacting regions to HEAT (Huntingtin, EF3, PP2A, and TOR1) motifs in SF3B1 associated with disease mutations. Furthermore, we show that mutations in these motifs from both human disease and yeast genetic screens alter the physical interaction with Prp5p, alter branch region specification, and phenocopy mutations in Prp5p. These and other data demonstrate that mutations in Hsh155p and Prp5p alter splicing because they change the direct physical interaction between Hsh155p and Prp5p. This altered physical interaction results in altered loading (i.e., "fidelity") of the BS-U2 duplex into the SF3B complex during prespliceosome formation. These results provide a mechanistic framework to explain the consequences of intron recognition and splicing of SF3B1 mutations found in disease.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Ribonucleoproteína Nuclear Pequeña U2/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencias de Aminoácidos/genética , ARN Helicasas DEAD-box/genética , Humanos , Intrones/genética , Mutación , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Unión Proteica/genética , Precursores del ARN/metabolismo , Empalme del ARN/genética , Ribonucleoproteína Nuclear Pequeña U2/genética , Proteínas de Saccharomyces cerevisiae/genética , Empalmosomas/genética
3.
Nature ; 455(7215): 997-1000, 2008 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-18815595

RESUMEN

The meiotic cell cycle is modified from the mitotic cell cycle by having a pre-meiotic S phase that leads to high levels of recombination, two rounds of nuclear division with no intervening DNA synthesis and a reductional pattern of chromosome segregation. Rem1 is a cyclin that is only expressed during meiosis in the fission yeast Schizosaccharomyces pombe. Cells in which rem1 has been deleted show decreased intragenic meiotic recombination and a delay at the onset of meiosis I (ref. 1). When ectopically expressed in mitotically growing cells, Rem1 induces a G1 arrest followed by severe mitotic catastrophes. Here we show that rem1 expression is regulated at the level of both transcription and splicing, encoding two proteins with different functions depending on the intron retention. We have determined that the regulation of rem1 splicing is not dependent on any transcribed region of the gene. Furthermore, when the rem1 promoter is fused to other intron-containing genes, the chimaeras show a meiotic-specific regulation of splicing, exactly the same as endogenous rem1. This regulation is dependent on two transcription factors of the forkhead family, Mei4 (ref. 2) and Fkh2 (ref. 3). Whereas Mei4 induces both transcription and splicing of rem1, Fkh2 is responsible for the intron retention of the transcript during vegetative growth and the pre-meiotic S phase.


Asunto(s)
Empalme Alternativo/genética , Ciclinas/genética , Regiones Promotoras Genéticas/genética , Schizosaccharomyces/genética , Regulación Fúngica de la Expresión Génica , Intrones/genética , Meiosis/genética , Recombinación Genética , Schizosaccharomyces/citología , Proteínas de Schizosaccharomyces pombe/metabolismo , Empalmosomas/química , Empalmosomas/genética , Empalmosomas/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética/genética
4.
Mol Cell ; 38(2): 159-61, 2010 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-20417595
5.
Mol Biol Cell ; 18(6): 2288-95, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17409354

RESUMEN

Peroxiredoxins are known to interact with hydrogen peroxide (H(2)O(2)) and to participate in oxidant scavenging, redox signal transduction, and heat-shock responses. The two-cysteine peroxiredoxin Tpx1 of Schizosaccharomyces pombe has been characterized as the H(2)O(2) sensor that transduces the redox signal to the transcription factor Pap1. Here, we show that Tpx1 is essential for aerobic, but not anaerobic, growth. We demonstrate that Tpx1 has an exquisite sensitivity for its substrate, which explains its participation in maintaining low steady-state levels of H(2)O(2). We also show in vitro and in vivo that inactivation of Tpx1 by oxidation of its catalytic cysteine to a sulfinic acid is always preceded by a sulfinic acid form in a covalently linked dimer, which may be important for understanding the kinetics of Tpx1 inactivation. Furthermore, we provide evidence that a strain expressing Tpx1.C169S, lacking the resolving cysteine, can sustain aerobic growth, and we show that small reductants can modulate the activity of the mutant protein in vitro, probably by supplying a thiol group to substitute for cysteine 169.


Asunto(s)
Aerobiosis/fisiología , Peróxido de Hidrógeno/metabolismo , Oxidantes/metabolismo , Peroxidasas/metabolismo , Schizosaccharomyces/fisiología , Animales , Cisteína/metabolismo , Oxidación-Reducción , Proteínas Asociadas a Pancreatitis , Peroxidasas/genética , Peroxirredoxinas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Schizosaccharomyces pombe , Especificidad por Sustrato , Ácidos Sulfínicos/metabolismo
6.
Mol Cell Biol ; 25(15): 6330-7, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16024772

RESUMEN

The meiotic cell cycle is modified from the mitotic cell cycle by having a premeiotic S phase which leads to high levels of recombination, a reductional pattern of chromosome segregation at the first division, and a second division with no intervening DNA synthesis. Cyclin-dependent kinases are essential for progression through the meiotic cell cycle, as for the mitotic cycle. Here we show that a fission yeast cyclin, Rem1, is present only during meiosis. Cells lacking Rem1 have impaired meiotic recombination, and Rem1 is required for premeiotic DNA synthesis when Cig2 is not present. rem1 expression is regulated at the level of both transcription and splicing, with Mei4 as a positive and Cig2 a negative factor of rem1 splicing. This regulation ensures the timely appearance of the different cyclins during meiosis, which is required for the proper progression through the meiotic cell cycle. We propose that the meiosis-specific B-type cyclin Rem1 has a central role in bringing about progression through meiosis.


Asunto(s)
Ciclina B/metabolismo , Meiosis/fisiología , Empalme del ARN/fisiología , Proteínas de Ciclo Celular/metabolismo , Ciclina B/genética , Ciclinas/genética , Ciclinas/metabolismo , Regulación Fúngica de la Expresión Génica/fisiología , Meiosis/genética , Empalme del ARN/genética , ARN Mensajero/metabolismo , Recombinación Genética , Schizosaccharomyces/fisiología , Proteínas de Schizosaccharomyces pombe/metabolismo
7.
Cell Rep ; 14(4): 885-895, 2016 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-26804917

RESUMEN

Meiosis is a differentiated program of the cell cycle that is characterized by high levels of recombination followed by two nuclear divisions. In fission yeast, the genetic program during meiosis is regulated at multiple levels, including transcription, mRNA stabilization, and splicing. Mei4 is a forkhead transcription factor that controls the expression of mid-meiotic genes. Here, we describe that Fkh2, another forkhead transcription factor that is essential for mitotic cell-cycle progression, also plays a pivotal role in the control of meiosis. Fkh2 binding preexists in most Mei4-dependent genes, inhibiting their expression. During meiosis, Fkh2 is phosphorylated in a CDK/Cig2-dependent manner, decreasing its affinity for DNA, which creates a window of opportunity for Mei4 binding to its target genes. We propose that Fkh2 serves as a placeholder until the later appearance of Mei4 with a higher affinity for DNA that induces the expression of a subset of meiotic genes.


Asunto(s)
ADN de Hongos/genética , Regulación Fúngica de la Expresión Génica , Meiosis , Proteínas de Schizosaccharomyces pombe/metabolismo , Factores de Transcripción/metabolismo , Ciclina B/genética , Ciclina B/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Factores de Transcripción/genética
8.
Mol Biol Cell ; 19(4): 1670-9, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18272791

RESUMEN

Control of cell cycle progression by stress-activated protein kinases (SAPKs) is essential for cell adaptation to extracellular stimuli. The Schizosaccharomyces pombe SAPK Sty1/Spc1 orchestrates general changes in gene expression in response to diverse forms of cytotoxic stress. Here we show that Sty1/Spc1 is bound to its target, the Srk1 kinase, when the signaling pathway is inactive. In response to stress, Sty1/Spc1 phosphorylates Srk1 at threonine 463 of the regulatory domain, inducing both activation of Srk1 kinase, which negatively regulates cell cycle progression by inhibiting Cdc25, and dissociation of Srk1 from the SAPK, which leads to Srk1 degradation by the proteasome.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Transporte Activo de Núcleo Celular , Sustitución de Aminoácidos , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Activación Enzimática , Estabilidad de Enzimas , Proteínas Fúngicas/antagonistas & inhibidores , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos/química , Proteínas Quinasas Activadas por Mitógenos/genética , Modelos Biológicos , Mutagénesis Sitio-Dirigida , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Schizosaccharomyces/citología , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Transducción de Señal , Treonina/química , ras-GRF1/antagonistas & inhibidores , ras-GRF1/genética , ras-GRF1/metabolismo
10.
Mol Microbiol ; 45(1): 243-54, 2002 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12100563

RESUMEN

During the last decade, much has been learnt about the mechanisms by which oxidative stress is perceived by aerobic organisms. The Schizosaccharomyces pombe Pap1 protein is a transcription factor localized at the cytoplasm, which accumulates in the nucleus in response to different inducers, such as the pro-oxidant hydrogen peroxide (H2O2) or the glutathione-depleting agent diethylmaleate (DEM). As described for other H2O2 sensors, our genetic data indicates that H2O2 reversibly oxidizes two cysteine residues in Pap1 (Cys278 and Cys501). Surprisingly, our studies demonstrate that DEM generates a non-reversible modification of at least two cysteine residues located in or close to the nuclear export signal of Pap1 (Cys523 and Cys532). This modification impedes the interaction of the nuclear exporter Crm1 with the nuclear export signal located at the carboxy-terminal domain of Pap1. Mass spectrometry data suggest that DEM binds to the thiol groups of the target cysteine residues through the formation of a thioether. Here we show that DEM triggers Pap1 nuclear accumulation by a novel molecular mechanism.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Maleatos/farmacología , Schizosaccharomyces/efectos de los fármacos , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Núcleo Celular/metabolismo , Cisteína/química , Cisteína/metabolismo , Proteínas de Unión al ADN/genética , Proteínas Fúngicas/genética , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Maleatos/metabolismo , Estrés Oxidativo , Proteínas Asociadas a Pancreatitis , Schizosaccharomyces/genética , Schizosaccharomyces/crecimiento & desarrollo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe , Transducción de Señal , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA