Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mar Drugs ; 18(1)2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31861453

RESUMEN

The Caribbean soft coral Erythropodium caribaeorum is a rich source of erythrolides-chlorinated briarane diterpenoids. These compounds have an ecological role as feeding deterrents, with a wide variation in their composition depending on the location where the sample is collected. In Colombia, this soft coral can be found at different locations in the Caribbean Sea including Santa Marta, Islas del Rosario, and Providencia-three environmentally different coral reef areas in the south and southwest Caribbean Sea. In order to evaluate differences in erythrolide composition, the metabolic profiles of samples from each of these locations were analyzed by HPLC-MS. Principal component analysis showed changes in the diterpene composition according to the sample origin. Diterpenes from samples collected at each location were isolated to describe the three chemotypes. The chemotype from Santa Marta was highly diverse, with the new erythrolides W and X together with eight known erythrolides. The sample from Islas del Rosario showed a low diversity chemotype constituted by high amounts of erythrolide A and B. The chemotype from Providencia showed low chemical diversity with only two main compounds-erythrolide V and R. Evaluation of cytotoxic activity against the human cancer cell lines PC-3, MCF7, and A549 showed erythrolides A and B as the more active compounds with IC50 values in the range from 2.45 to 30 µM.


Asunto(s)
Antozoos/química , Metaboloma , Animales , Antozoos/metabolismo , Región del Caribe , Colombia , Arrecifes de Coral , Diterpenos/química , Humanos
2.
Front Microbiol ; 5: 597, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25429286

RESUMEN

Anaerobic digestion (AD) is a biological process where different trophic groups of microorganisms break down biodegradable organic materials in the absence of oxygen. A wide range of AD technologies is being used to convert livestock manure, municipal and industrial wastewaters, and solid organic wastes into biogas. AD gains importance not only because of its relevance in waste treatment but also because of the recovery of carbon in the form of methane, which is a renewable energy and is used to generate electricity and heat. Despite the advances on the engineering and design of new bioreactors for AD, the microbiology component always poses challenges. Microbiology of AD processes is complicated as the efficiency of the process depends on the interactions of various trophic groups involved. Due to the complex interdependence of microbial activities for the functionality of the anaerobic bioreactors, the genetic expression of mcrA, which encodes a key enzyme in methane formation, is proposed as a parameter to monitor the process performance in real time. This review evaluates the current knowledge on microbial groups, their interactions, and their relationship to the performance of anaerobic biodigesters with a focus on using mcrA gene expression as a tool to monitor the process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA