Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Pediatr Blood Cancer ; 68 Suppl 2: e28609, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33818891

RESUMEN

The Children's Oncology Group (COG) has a strong quality assurance (QA) program managed by the Imaging and Radiation Oncology Core (IROC). This program consists of credentialing centers and providing real-time management of each case for protocol compliant target definition and radiation delivery. In the International Society of Pediatric Oncology (SIOP), the lack of an available, reliable online data platform has been a challenge and the European Society for Paediatric Oncology (SIOPE) quality and excellence in radiotherapy and imaging for children and adolescents with cancer across Europe in clinical trials (QUARTET) program currently provides QA review for prospective clinical trials. The COG and SIOP are fully committed to a QA program that ensures uniform execution of protocol treatments and provides validity of the clinical data used for analysis.


Asunto(s)
Neoplasias/radioterapia , Garantía de la Calidad de Atención de Salud/normas , Oncología por Radiación/normas , Planificación de la Radioterapia Asistida por Computador/normas , Adolescente , Niño , Humanos
2.
J Appl Clin Med Phys ; 19(5): 335-346, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29959816

RESUMEN

The charge of AAPM Task Group 113 is to provide guidance for the physics aspects of clinical trials to minimize variability in planning and dose delivery for external beam trials involving photons and electrons. Several studies have demonstrated the importance of protocol compliance on patient outcome. Minimizing variability for treatments at different centers improves the quality and efficiency of clinical trials. Attention is focused on areas where variability can be minimized through standardization of protocols and processes through all aspects of clinical trials. Recommendations are presented for clinical trial designers, physicists supporting clinical trials at their individual clinics, quality assurance centers, and manufacturers.


Asunto(s)
Ensayos Clínicos como Asunto , Electrones , Humanos , Fotones , Física , Tomografía Computarizada por Tomografía de Emisión de Positrones , Guías de Práctica Clínica como Asunto , Informe de Investigación
3.
Int J Radiat Oncol Biol Phys ; 119(3): 737-749, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38110104

RESUMEN

PURPOSE: The highly heterogeneous dose delivery of spatially fractionated radiation therapy (SFRT) is a profound departure from standard radiation planning and reporting approaches. Early SFRT studies have shown excellent clinical outcomes. However, prospective multi-institutional clinical trials of SFRT are still lacking. This NRG Oncology/American Association of Physicists in Medicine working group consensus aimed to develop recommendations on dosimetric planning, delivery, and SFRT dose reporting to address this current obstacle toward the design of SFRT clinical trials. METHODS AND MATERIALS: Working groups consisting of radiation oncologists, radiobiologists, and medical physicists with expertise in SFRT were formed in NRG Oncology and the American Association of Physicists in Medicine to investigate the needs and barriers in SFRT clinical trials. RESULTS: Upon reviewing the SFRT technologies and methods, this group identified challenges in several areas, including the availability of SFRT, the lack of treatment planning system support for SFRT, the lack of guidance in the physics and dosimetry of SFRT, the approximated radiobiological modeling of SFRT, and the prescription and combination of SFRT with conventional radiation therapy. CONCLUSIONS: Recognizing these challenges, the group further recommended several areas of improvement for the application of SFRT in cancer treatment, including the creation of clinical practice guidance documents, the improvement of treatment planning system support, the generation of treatment planning and dosimetric index reporting templates, and the development of better radiobiological models through preclinical studies and through conducting multi-institution clinical trials.


Asunto(s)
Ensayos Clínicos como Asunto , Fraccionamiento de la Dosis de Radiación , Planificación de la Radioterapia Asistida por Computador , Humanos , Planificación de la Radioterapia Asistida por Computador/métodos , Planificación de la Radioterapia Asistida por Computador/normas , Estudios Prospectivos , Neoplasias/radioterapia , Oncología por Radiación/normas , Estudios Multicéntricos como Asunto , Radiobiología , Consenso
4.
J Appl Clin Med Phys ; 14(4): 4313, 2013 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-23835394

RESUMEN

An anthropomorphic head phantom, constructed from a water-equivalent plastic shell with only a spherical target, was modified to include a nonspherical target (pituitary) and an adjacent organ at risk (OAR) (optic chiasm), within 2 mm, simulating the anatomy encountered when treating acromegaly. The target and OAR spatial proximity provided a more realistic treatment planning and dose delivery exercise. A separate dosimetry insert contained two TLD for absolute dosimetry and radiochromic film, in the sagittal and coronal planes, for relative dosimetry. The prescription was 25 Gy to 90% of the GTV, with ≤ 10% of the OAR volume receiving ≥ 8 Gy for the phantom trial. The modified phantom was used to test the rigor of the treatment planning process and phantom reproducibility using a Gamma Knife, CyberKnife, and linear accelerator (linac)-based radiosurgery system. Delivery reproducibility was tested by repeating each irradiation three times. TLD results from three irradiations on a CyberKnife and Gamma Knife agreed with the calculated target dose to within ± 4% with a maximum coefficient of variation of ± 2.1%. Gamma analysis in the coronal and sagittal film planes showed an average passing rate of 99.4% and 99.5% using ± 5%/3 mm criteria, respectively. Results from the linac irradiation were within ± 6.2% for TLD with a coefficient of variation of ± 0.1%. Distance to agreement was calculated to be 1.2 mm and 1.3mm along the inferior and superior edges of the target in the sagittal film plane, and 1.2 mm for both superior and inferior edges in the coronal film plane. A modified, anatomically realistic SRS phantom was developed that provided a realistic clinical planning and delivery challenge that can be used to credential institutions wanting to participate in NCI-funded clinical trials.


Asunto(s)
Fantasmas de Imagen/normas , Radiocirugia/normas , Acromegalia/cirugía , Adenoma/cirugía , Ensayos Clínicos como Asunto , Cabeza , Humanos , Cuello , Quiasma Óptico/efectos de la radiación , Órganos en Riesgo , Neoplasias Hipofisarias/cirugía , Control de Calidad , Planificación de la Radioterapia Asistida por Computador/normas , Reproducibilidad de los Resultados , Dosimetría Termoluminiscente
5.
Radiother Oncol ; 182: 109577, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36841341

RESUMEN

AIM OF THE STUDY: To elucidate the important factors and their interplay that drive performance on IMRT phantoms from the Imaging and Radiation Oncology Core (IROC). METHODS: IROC's IMRT head and neck phantom contains two targets and an organ at risk. Point and 2D dose are measured by TLDs and film, respectively. 1,542 irradiations between 2012-2020 were retrospectively analyzed based on output parameters, complexity metrics, and treatment parameters. Univariate analysis compared parameters based on pass/fail, and random forest modeling was used to predict output parameters and determine the underlying importance of the variables. RESULTS: The average phantom pass rate was 92% and has not significantly improved over time. The step-and-shoot irradiation technique had significantly lower pass rates that significantly affected other treatment parameters' pass rates. The complexity of plans has significantly increased with time, and all aperture-based complexity metrics (except MCS) were associated with the probability of failure. Random forest-based prediction of failure had an accuracy of 98% on held-out test data not used in model training. While complexity metrics were the most important contributors, the specific metric depended on the set of treatment parameters used during the irradiation. CONCLUSION: With the prevalence of errors in radiotherapy, understanding which parameters affect treatment delivery is vital to improve patient treatment. Complexity metrics were strongly predictive of irradiation failure; however, they are dependent on the specific treatment parameters. In addition, the use of one complexity metric is insufficient to monitor all aspects of the treatment plan.


Asunto(s)
Oncología por Radiación , Radioterapia de Intensidad Modulada , Humanos , Radioterapia de Intensidad Modulada/métodos , Estudios Retrospectivos , Planificación de la Radioterapia Asistida por Computador/métodos , Fantasmas de Imagen , Dosificación Radioterapéutica , Aprendizaje Automático
6.
J Appl Clin Med Phys ; 13(6): 3803, 2012 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-23149774

RESUMEN

Ion recombination is approximately corrected for in the Task Group 51 protocol by Pion, which is calculated by a two-voltage measurement. This measurement approach may be a poor estimate of the true recombination, particularly if Pion is large (greater than 1.05). Concern exists that Pion in high-dose-per-pulse beams, such as flattening filter free (FFF) beams, may be unacceptably high, rendering the two-voltage measurement technique inappropriate. Therefore, Pion was measured for flattened beams of 6, 10, 15, and 18 MV and for FFF beams of 6 and 10 MV. The values for the FFF beams were verified with 1/V versus 1/Q curves (Jaffé plots). Pion was also measured for electron beams of 6, 12, 16, 18, and 20 MeV on a traditional accelerator, as well as on the high-dose-rate Varian TrueBeam accelerator. The measurements were made at a range of depths and with PTW, NEL, and Exradin Farmer-type chambers. Consistent with the increased dose per pulse, Pion was higher for FFF beams than for flattening filter beams. However, for all beams, measurement locations, and chambers examined, Pion never exceeded 1.018. Additionally, Pion was always within 0.3% of the recombination calculated from the Jaffé plots. We conclude that ion recombination can be adequately accounted for in high-dose-rate FFF beams using Pion determined with the standard two-voltage technique.


Asunto(s)
Aceleradores de Partículas/instrumentación , Fantasmas de Imagen , Fotones , Planificación de la Radioterapia Asistida por Computador , Humanos , Dosificación Radioterapéutica
7.
J Appl Clin Med Phys ; 13(5): 3962, 2012 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-22955664

RESUMEN

Delivery of accurate intensity-modulated radiation therapy (IMRT) or stereotactic radiotherapy depends on a multitude of steps in the treatment delivery process. These steps range from imaging of the patient to dose calculation to machine delivery of the treatment plan. Within the treatment planning system's (TPS) dose calculation algorithm, various unique small field dosimetry parameters are essential, such as multileaf collimator modeling and field size dependence of the output. One of the largest challenges in this process is determining accurate small field size output factors. The Radiological Physics Center (RPC), as part of its mission to ensure that institutions deliver comparable and consistent radiation doses to their patients, conducts on-site dosimetry review visits to institutions. As a part of the on-site audit, the RPC measures the small field size output factors as might be used in IMRT treatments, and compares the resulting field size dependent output factors to values calculated by the institution's treatment planning system (TPS). The RPC has gathered multiple small field size output factor datasets for X-ray energies ranging from 6 to 18 MV from Varian, Siemens and Elekta linear accelerators. These datasets were measured at 10 cm depth and ranged from 10 × 10 cm(2) to 2 × 2 cm(2). The field sizes were defined by the MLC and for the Varian machines the secondary jaws were maintained at a 10 × 10 cm(2). The RPC measurements were made with a micro-ion chamber whose volume was small enough to gather a full ionization reading even for the 2 × 2 cm(2) field size. The RPC-measured output factors are tabulated and are reproducible with standard deviations (SD) ranging from 0.1% to 1.5%, while the institutions' calculated values had a much larger SD range, ranging up to 7.9% [corrected].The absolute average percent differences were greater for the 2 × 2 cm(2) than for the other field sizes. The RPC's measured small field output factors provide institutions with a standard dataset against which to compare their TPS calculated values. Any discrepancies noted between the standard dataset and calculated values should be investigated with careful measurements and with attention to the specific beam model.


Asunto(s)
Aceleradores de Partículas/normas , Dosificación Radioterapéutica/normas , Planificación de la Radioterapia Asistida por Computador/normas , Radioterapia de Intensidad Modulada/normas , Física Sanitaria , Humanos , Estándares de Referencia
8.
Neurooncol Adv ; 4(1): vdac058, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35664554

RESUMEN

Background: Stereotactic radiosurgery (SRS) is a common treatment for intracranial lesions. This work explores the state of SRS treatment delivery to characterize current treatment accuracy based on treatment parameters. Methods: NCI clinical trials involving SRS rely on an end-to-end treatment delivery on a patient surrogate (credentialing phantom) from the Imaging and Radiation Oncology Core (IROC) to test their treatment accuracy. The results of 1072 SRS phantom irradiations between 2012 and 2020 were retrospectively analyzed. Univariate analysis and random forest models were used to associate irradiation conditions with phantom performance. The following categories were evaluated in terms of how they predicted outcomes: year of irradiation, TPS algorithm, machine model, energy, and delivered field size. Results: Overall, only 84.6% of irradiations have met the IROC/NCI acceptability criteria. Pass rate has remained constant over time, while dose calculation accuracy has slightly improved. Dose calculation algorithm (P < .001), collimator (P = .024), and field size (P < .001) were statistically significant predictors of pass/fail. Specifically, pencil beam algorithms and cone collimators were more likely to be associated with failing phantom results. Random forest modeling identified the size of the field as the most important factor for passing or failing followed by algorithm. Conclusion: Constant throughout this retrospective study, approximately 15% of institutions fail to meet IROC/NCI standards for SRS treatment. In current clinical practice, this is particularly associated with smaller fields that yielded less accurate results. There is ongoing need to improve small field dosimetry, beam modeling, and QA to ensure high treatment quality, patient safety, and optimal clinical trials.

9.
Med Phys ; 38(1): 504-30, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21361219

RESUMEN

The requirement of an independent verification of the monitor units (MU) or time calculated to deliver the prescribed dose to a patient has been a mainstay of radiation oncology quality assurance. The need for and value of such a verification was obvious when calculations were performed by hand using look-up tables, and the verification was achieved by a second person independently repeating the calculation. However, in a modern clinic using CT/MR/PET simulation, computerized 3D treatment planning, heterogeneity corrections, and complex calculation algorithms such as convolution/superposition and Monte Carlo, the purpose of and methodology for the MU verification have come into question. In addition, since the verification is often performed using a simpler geometrical model and calculation algorithm than the primary calculation, exact or almost exact agreement between the two can no longer be expected. Guidelines are needed to help the physicist set clinically reasonable action levels for agreement. This report addresses the following charges of the task group: (1) To re-evaluate the purpose and methods of the "independent second check" for monitor unit calculations for non-IMRT radiation treatment in light of the complexities of modern-day treatment planning. (2) To present recommendations on how to perform verification of monitor unit calculations in a modern clinic. (3) To provide recommendations on establishing action levels for agreement between primary calculations and verification, and to provide guidance in addressing discrepancies outside the action levels. These recommendations are to be used as guidelines only and shall not be interpreted as requirements.


Asunto(s)
Física , Radioterapia/métodos , Informe de Investigación , Sociedades , Algoritmos , Computadores , Humanos , Control de Calidad , Radiometría , Radiocirugia , Planificación de la Radioterapia Asistida por Computador , Reproducibilidad de los Resultados , Proyectos de Investigación , Estados Unidos
10.
Int J Radiat Oncol Biol Phys ; 111(5): 1155-1164, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34352289

RESUMEN

PURPOSE: The aim of this study was to examine current practice patterns in pediatric total body irradiation (TBI) techniques among COG member institutions. METHODS AND MATERIALS: Between November 2019 and February 2020, a questionnaire containing 52 questions related to the technical aspects of TBI was sent to medical physicists at 152 COG institutions. The questions were designed to obtain technical information on commonly used TBI treatment techniques. Another set of 9 questions related to the clinical management of patients undergoing TBI was sent to 152 COG member radiation oncologists at the same institutions. RESULTS: Twelve institutions were excluded because TBI was not performed in their institutions. A total of 88 physicists from 88 institutions (63% response rate) and 96 radiation oncologists from 96 institutions (69% response rate) responded. The anterior-posterior/posterior-anterior (AP/PA) technique was the most common technique reported (49 institutions [56%]); 44 institutions (50%) used the lateral technique, and 14 (16%) used volumetric modulated arc therapy or tomotherapy. Midplane dose rates of 6 to 15 cGy/min were most commonly used. The most common specification for lung dose was the midlung dose for both AP/PA techniques (71%) and lateral techniques (63%). Almost all physician responders agreed with the need to refine current TBI techniques, and 79% supported the investigation of new TBI techniques to further lower the lung dose. CONCLUSIONS: There was no consistency in the practice patterns, methods for dose measurement, and reporting of TBI doses among COG institutions. The lack of standardization precludes meaningful correlation between TBI doses and clinical outcomes including disease control and normal tissue toxicity. The COG radiation oncology discipline is currently undertaking several steps to standardize the practice and dose reporting of pediatric TBI using detailed questionnaires and phantom-based credentialing for all COG centers.


Asunto(s)
Oncología por Radiación , Radioterapia de Intensidad Modulada , Niño , Humanos , Pulmón , Encuestas y Cuestionarios , Irradiación Corporal Total
11.
Med Phys ; 36(11): 5359-73, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19994544

RESUMEN

AAPM Task Group 119 has produced quantitative confidence limits as baseline expectation values for IMRT commissioning. A set of test cases was developed to assess the overall accuracy of planning and delivery of IMRT treatments. Each test uses contours of targets and avoidance structures drawn within rectangular phantoms. These tests were planned, delivered, measured, and analyzed by nine facilities using a variety of IMRT planning and delivery systems. Each facility had passed the Radiological Physics Center credentialing tests for IMRT. The agreement between the planned and measured doses was determined using ion chamber dosimetry in high and low dose regions, film dosimetry on coronal planes in the phantom with all fields delivered, and planar dosimetry for each field measured perpendicular to the central axis. The planar dose distributions were assessed using gamma criteria of 3%/3 mm. The mean values and standard deviations were used to develop confidence limits for the test results using the concept confidence limit = /mean/ + 1.96sigma. Other facilities can use the test protocol and results as a basis for comparison to this group. Locally derived confidence limits that substantially exceed these baseline values may indicate the need for improved IMRT commissioning.


Asunto(s)
Radiometría , Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada/normas , Dosimetría por Película , Neoplasias de Cabeza y Cuello/radioterapia , Humanos , Masculino , Fantasmas de Imagen , Neoplasias de la Próstata/radioterapia , Garantía de la Calidad de Atención de Salud
12.
Med Phys ; 45(5): 2337-2344, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29537634

RESUMEN

PURPOSE: Reference dosimetry data can provide an independent second check of acquired values when commissioning or validating a treatment planning system (TPS). The Imaging and Radiation Oncology Core at Houston (IROC-Houston) has measured numerous linear accelerators throughout its existence. The results of those measurements are given here, comparing accelerators and the agreement of measurement versus institutional TPS calculations. METHODS: Data from IROC-Houston on-site reviews from 2000 through 2014 were analyzed for all Elekta accelerators, approximately 50. For each, consistent point dose measurements were conducted for several basic parameters in a water phantom, including percentage depth dose, output factors, small-field output factors, off-axis factors, and wedge factors. The results were compared by accelerator type independently for 6, 10, 15, and 18 MV. Distributions of the measurements for each parameter are given, providing the mean and standard deviation. Each accelerator's measurements were also compared to its corresponding TPS calculation from the institution to determine the level of agreement, as well as determining which dosimetric parameters were most often in error. RESULTS: Accelerators were grouped by head type and reference dosimetric values were compiled. No class of linac had better overall agreement with its TPS, but percentage depth dose and output factors commonly agreed well, while small-field output factors, off-axis factors, and wedge factors often disagreed substantially from their TPS calculations. CONCLUSION: Reference data has been collected and analyzed for numerous Elekta linacs, which provide an independent way for a physicist to double-check their own measurements to prevent gross treatment errors. In addition, treatment planning parameters more often in error have been highlighted, providing practical caution for physicists commissioning treatment planning systems for Elekta linacs.


Asunto(s)
Modelos Teóricos , Aceleradores de Partículas , Radiometría/instrumentación , Radiometría/normas , Bases de Datos Factuales , Neoplasias/radioterapia , Estándares de Referencia
13.
Med Phys ; 45(4): e53-e83, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29443390

RESUMEN

PURPOSE: Patient-specific IMRT QA measurements are important components of processes designed to identify discrepancies between calculated and delivered radiation doses. Discrepancy tolerance limits are neither well defined nor consistently applied across centers. The AAPM TG-218 report provides a comprehensive review aimed at improving the understanding and consistency of these processes as well as recommendations for methodologies and tolerance limits in patient-specific IMRT QA. METHODS: The performance of the dose difference/distance-to-agreement (DTA) and γ dose distribution comparison metrics are investigated. Measurement methods are reviewed and followed by a discussion of the pros and cons of each. Methodologies for absolute dose verification are discussed and new IMRT QA verification tools are presented. Literature on the expected or achievable agreement between measurements and calculations for different types of planning and delivery systems are reviewed and analyzed. Tests of vendor implementations of the γ verification algorithm employing benchmark cases are presented. RESULTS: Operational shortcomings that can reduce the γ tool accuracy and subsequent effectiveness for IMRT QA are described. Practical considerations including spatial resolution, normalization, dose threshold, and data interpretation are discussed. Published data on IMRT QA and the clinical experience of the group members are used to develop guidelines and recommendations on tolerance and action limits for IMRT QA. Steps to check failed IMRT QA plans are outlined. CONCLUSION: Recommendations on delivery methods, data interpretation, dose normalization, the use of γ analysis routines and choice of tolerance limits for IMRT QA are made with focus on detecting differences between calculated and measured doses via the use of robust analysis methods and an in-depth understanding of IMRT verification metrics. The recommendations are intended to improve the IMRT QA process and establish consistent, and comparable IMRT QA criteria among institutions.


Asunto(s)
Garantía de la Calidad de Atención de Salud/métodos , Radioterapia de Intensidad Modulada/efectos adversos , Radioterapia de Intensidad Modulada/métodos , Seguridad , Humanos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
14.
Phys Imaging Radiat Oncol ; 7: 39-44, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31872085

RESUMEN

BACKGROUND AND PURPOSE: Remote beam output audits, which independently measure an institution's machine calibration, are a common component of independent radiotherapy peer review. This work reviews the results and trends of these audit results across several organisations and geographical regions. MATERIALS AND METHODS: Beam output audit results from the Australian Clinical Dosimetry Services, International Atomic Energy Agency, Imaging and Radiation Oncology Core, and Radiation Dosimetry Services were evaluated from 2010 to the present. The rate of audit results outside a +/-5% tolerance was evaluated for photon and electron beams as a function of the year of irradiation and nominal beam energy. Additionally, examples of confirmed calibration errors were examined to provide guidance to clinical physicists and auditing bodies. RESULTS: Of the 210,167 audit results, 1323 (0.63%) were outside of tolerance. There was a clear trend of improved audit performance for more recent dates, and while all photon energies generally showed uniform rates of results out of tolerance, low (6 MeV) and high (≥18 MeV) energy electron beams showed significantly elevated rates. Twenty nine confirmed calibration errors were explored and attributed to a range of issues, such as equipment failures, errors in setup, and errors in performing the clinical reference calibration. Forty-two percent of these confirmed errors were detected during ongoing periodic monitoring, and not at the time of the first audit of the machine. CONCLUSIONS: Remote beam output audits have identified, and continue to identify, numerous and often substantial beam calibration errors.

15.
Int J Radiat Oncol Biol Phys ; 100(4): 1057-1066, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29485047

RESUMEN

A substantial barrier to the single- and multi-institutional aggregation of data to supporting clinical trials, practice quality improvement efforts, and development of big data analytics resource systems is the lack of standardized nomenclatures for expressing dosimetric data. To address this issue, the American Association of Physicists in Medicine (AAPM) Task Group 263 was charged with providing nomenclature guidelines and values in radiation oncology for use in clinical trials, data-pooling initiatives, population-based studies, and routine clinical care by standardizing: (1) structure names across image processing and treatment planning system platforms; (2) nomenclature for dosimetric data (eg, dose-volume histogram [DVH]-based metrics); (3) templates for clinical trial groups and users of an initial subset of software platforms to facilitate adoption of the standards; (4) formalism for nomenclature schema, which can accommodate the addition of other structures defined in the future. A multisociety, multidisciplinary, multinational group of 57 members representing stake holders ranging from large academic centers to community clinics and vendors was assembled, including physicists, physicians, dosimetrists, and vendors. The stakeholder groups represented in the membership included the AAPM, American Society for Radiation Oncology (ASTRO), NRG Oncology, European Society for Radiation Oncology (ESTRO), Radiation Therapy Oncology Group (RTOG), Children's Oncology Group (COG), Integrating Healthcare Enterprise in Radiation Oncology (IHE-RO), and Digital Imaging and Communications in Medicine working group (DICOM WG); A nomenclature system for target and organ at risk volumes and DVH nomenclature was developed and piloted to demonstrate viability across a range of clinics and within the framework of clinical trials. The final report was approved by AAPM in October 2017. The approval process included review by 8 AAPM committees, with additional review by ASTRO, European Society for Radiation Oncology (ESTRO), and American Association of Medical Dosimetrists (AAMD). This Executive Summary of the report highlights the key recommendations for clinical practice, research, and trials.


Asunto(s)
Oncología por Radiación/normas , Sociedades Científicas/normas , Terminología como Asunto , Comités Consultivos/organización & administración , Comités Consultivos/normas , Ensayos Clínicos como Asunto , Humanos , Dosificación Radioterapéutica/normas , Planificación de la Radioterapia Asistida por Computador/normas , Estándares de Referencia , Programas Informáticos/normas , Estados Unidos
16.
Med Phys ; 34(6): 2070-6, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17654910

RESUMEN

The Radiological Physics Center (RPC) developed two heterogeneous anthropomorphic quality assurance phantoms for use in verifying the accuracy of radiation delivery: one for intensity-modulated radiation therapy (IMRT) to the pelvis and the other for stereotactic body radiation therapy (SBRT) to the thorax. The purpose of this study was to describe the design and development of these two phantoms and to demonstrate the reproducibility of measurements generated with them. The phantoms were built to simulate actual patient anatomy. They are lightweight and water-fillable, and they contain imageable targets and organs at risk of radiation exposure that are of similar densities to their human counterparts. Dosimetry inserts accommodate radiochromic film for relative dosimetry and thermoluminesent dosimetry capsules for absolute dosimetry. As a part of the commissioning process, each phantom was imaged, treatment plans were developed, and radiation was delivered at least three times. Under these controlled irradiation conditions, the reproducibility of dose delivery to the target TLD in the pelvis and thorax phantoms was 3% and 0.5%, respectively. The reproducibility of radiation-field localization was less than 2.5 mm for both phantoms. Using these anthropomorphic phantoms, pelvic IMRT and thoracic SBRT radiation treatments can be verified with a high level of precision. These phantoms can be used to effectively credential institutions for participation in specific NCI-sponsored clinical trials.


Asunto(s)
Física Sanitaria/instrumentación , Neoplasias Pélvicas/radioterapia , Fantasmas de Imagen , Garantía de la Calidad de Atención de Salud/métodos , Radiometría/instrumentación , Planificación de la Radioterapia Asistida por Computador/instrumentación , Neoplasias Torácicas/radioterapia , Antropometría/instrumentación , Materiales Biomiméticos , Diseño de Equipo , Análisis de Falla de Equipo , Física Sanitaria/métodos , Humanos , Neoplasias Pélvicas/diagnóstico , Radiometría/métodos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Neoplasias Torácicas/diagnóstico
17.
Int J Radiat Oncol Biol Phys ; 99(5): 1094-1100, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29029890

RESUMEN

PURPOSE: To review the dosimetric, mechanical, and programmatic deficiencies most frequently observed during on-site visits of radiation therapy facilities by the Imaging and Radiation Oncology Core Quality Assurance Center in Houston (IROC Houston). METHODS AND MATERIALS: The findings of IROC Houston between 2000 and 2014, including 409 institutions and 1020 linear accelerators (linacs), were compiled. On-site evaluations by IROC Houston include verification of absolute calibration (tolerance of ±3%), relative dosimetric review (tolerances of ±2% between treatment planning system [TPS] calculation and measurement), mechanical evaluation (including multileaf collimator and kilovoltage-megavoltage isocenter evaluation against Task Group [TG]-142 tolerances), and general programmatic review (including institutional quality assurance program vs TG-40 and TG-142). RESULTS: An average of 3.1 deficiencies was identified at each institution visited, a number that has decreased slightly with time. The most common errors are tabulated and include TG-40/TG-142 compliance (82% of institutions were deficient), small field size output factors (59% of institutions had errors ≥3%), and wedge factors (33% of institutions had errors ≥3%). Dosimetric errors of ≥10%, including in beam calibration, were seen at many institutions. CONCLUSIONS: There is substantial room for improvement of both dosimetric and programmatic issues in radiation therapy, which should be a high priority for the medical physics community. Particularly relevant was suboptimal beam modeling in the TPS and a corresponding failure to detect these errors by not including TPS data in the linac quality assurance process.


Asunto(s)
Instituciones Oncológicas/normas , Garantía de la Calidad de Atención de Salud/normas , Oncología por Radiación/normas , Radioterapia/normas , Calibración/normas , Instituciones Oncológicas/estadística & datos numéricos , Humanos , Oncología por Radiación/instrumentación , Radiometría/normas , Radioterapia/instrumentación , Dosificación Radioterapéutica/normas , Errores de Configuración en Radioterapia/estadística & datos numéricos , Factores de Tiempo
18.
Technol Cancer Res Treat ; 5(5): 481-7, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16981790

RESUMEN

Intensity-modulated radiation therapy (IMRT) has gained rapid and wide-spread acceptance in the radiation oncology community for its ability to create dose distributions that conform to the convoluted shapes of many tumors. It is a complicated treatment technique, for which quality assurance procedures are correspondingly complicated and labor intensive. Several of the cooperative cancer study groups that conduct clinical trials under the auspices of the National Cancer Institute have required participating institutions to seek credentialing before enrolling patients in trials involving IMRT. The Radiological Physics Center has conducted such credentialing programs through the use of anthropomorphic phantoms that evaluate the planning and delivery of IMRT. The experience obtained through the irradiation of the phantoms by a number of institutions demonstrates that institutions vary significantly in their ability to deliver doses and dose distributions that agree with their own treatment plans.


Asunto(s)
Neoplasias/radioterapia , Fantasmas de Imagen , Radioterapia de Intensidad Modulada/métodos , Humanos , Dosificación Radioterapéutica , Reproducibilidad de los Resultados
19.
Med Phys ; 43(12): 6491, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27908168

RESUMEN

PURPOSE: To analyze the most recent results of the Imaging and Radiation Oncology Core Houston Quality Assurance Center's (IROC-H) anthropomorphic head and neck (H&N) phantom to determine the nature of failing irradiations and the feasibility of altering credentialing criteria. METHODS: IROC-H's H&N phantom, used for intensity-modulated radiation therapy credentialing for National Cancer Institute-sponsored clinical trials, requires that an institution's treatment plan agrees within ±7% of measured thermoluminescent dosimeter (TLD) doses; it also requires that ≥85% of pixels pass ±4 mm distance to agreement (7%/4 mm gamma analysis for film). The authors re-evaluated 156 phantom irradiations (November 1, 2014-October 31, 2015) according to the following tighter criteria: (1) 5% TLD and 5%/4 mm, (2) 5% TLD and 5%/3 mm, (3) 4% TLD and 4%/4 mm, and (4) 3% TLD and 3%/3 mm. Failure rates were evaluated with respect to individual film and TLD performance by location in the phantom. Overall poor phantom results were characterized qualitatively as systematic errors (correct shape and position but wrong magnitude of dose), setup errors/positional shifts, global but nonsystematic errors, and errors affecting only a local region. RESULTS: The pass rate for these phantoms using current criteria was 90%. Substituting criteria 1-4 reduced the overall pass rate to 77%, 70%, 63%, and 37%, respectively. Statistical analyses indicated that the probability of noise-induced TLD failure, even at the 5% criterion, was <0.5%. Phantom failures were generally identified by TLD (≥66% failed TLD, whereas ≥55% failed film), with most failures occurring in the primary planning target volume (≥77% of cases). Results failing current criteria or criteria 1 were primarily diagnosed as systematic >58% of the time (11/16 and 21/36 cases, respectively), with a greater extent due to underdosing. Setup/positioning errors were seen in 11%-13% of all failing cases (2/16 and 4/36 cases, respectively). Local errors (8/36 cases) could only be demonstrated at criteria 1. Only three cases of global errors were identified in these analyses. For current criteria and criteria 1, irradiations that failed from film only were overwhelmingly associated with phantom shifts/setup errors (≥80% of cases). CONCLUSIONS: This study highlighted that the majority of phantom failures are the result of systematic dosimetric discrepancies between the treatment planning system and the delivered dose. Further work is necessary to diagnose and resolve such dosimetric inaccuracy. In addition, the authors found that 5% TLD and 5%/4 mm gamma criteria may be both practically and theoretically achievable as an alternative to current criteria.


Asunto(s)
Habilitación Profesional , Cabeza/anatomía & histología , Cuello/anatomía & histología , Fantasmas de Imagen/normas , Radioterapia de Intensidad Modulada/instrumentación , Estudios de Factibilidad , Humanos , Control de Calidad
20.
Int J Radiat Oncol Biol Phys ; 95(5): 1527-1534, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27315667

RESUMEN

PURPOSE: To compare radiation machine measurement data collected by the Imaging and Radiation Oncology Core at Houston (IROC-H) with institutional treatment planning system (TPS) values, to identify parameters with large differences in agreement; the findings will help institutions focus their efforts to improve the accuracy of their TPS models. METHODS AND MATERIALS: Between 2000 and 2014, IROC-H visited more than 250 institutions and conducted independent measurements of machine dosimetric data points, including percentage depth dose, output factors, off-axis factors, multileaf collimator small fields, and wedge data. We compared these data with the institutional TPS values for the same points by energy, class, and parameter to identify differences and similarities using criteria involving both the medians and standard deviations for Varian linear accelerators. Distributions of differences between machine measurements and institutional TPS values were generated for basic dosimetric parameters. RESULTS: On average, intensity modulated radiation therapy-style and stereotactic body radiation therapy-style output factors and upper physical wedge output factors were the most problematic. Percentage depth dose, jaw output factors, and enhanced dynamic wedge output factors agreed best between the IROC-H measurements and the TPS values. Although small differences were shown between 2 common TPS systems, neither was superior to the other. Parameter agreement was constant over time from 2000 to 2014. CONCLUSIONS: Differences in basic dosimetric parameters between machine measurements and TPS values vary widely depending on the parameter, although agreement does not seem to vary by TPS and has not changed over time. Intensity modulated radiation therapy-style output factors, stereotactic body radiation therapy-style output factors, and upper physical wedge output factors had the largest disagreement and should be carefully modeled to ensure accuracy.


Asunto(s)
Algoritmos , Neoplasias/radioterapia , Radiometría/métodos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Conformacional/métodos , Radiometría/instrumentación , Planificación de la Radioterapia Asistida por Computador/instrumentación , Radioterapia Conformacional/instrumentación , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Texas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA