Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Photochem Photobiol Sci ; 22(9): 2153-2166, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37225911

RESUMEN

Sunlight regulates transcriptional programs and triggers the shaping of the genome throughout plant development. Among the different sunlight wavelengths that reach the surface of the Earth, UV-B (280-315 nm) controls the expression of hundreds of genes for the photomorphogenic responses and also induces the formation of photodamage that interfere with genome integrity and transcriptional programs. The combination of cytogenetics and deep-learning-based analyses allowed determining the location of UV-B-induced photoproducts and quantifying the effects of UV-B irradiation on constitutive heterochromatin content in different Arabidopsis natural variants acclimated to various UV-B regimes. We identified that UV-B-induced photolesions are enriched within chromocenters. Furthermore, we uncovered that UV-B irradiation promotes constitutive heterochromatin dynamics that differs among the Arabidopsis ecotypes having divergent heterochromatin contents. Finally, we identified that the proper restoration of the chromocenter shape, upon DNA repair, relies on the UV-B photoreceptor, UV RESISTANCE LOCUS 8 (UVR8). These findings shed the light on the effect of UV-B exposure and perception in the modulation of constitutive heterochromatin content in Arabidopsis thaliana.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Heterocromatina/metabolismo , Rayos Ultravioleta , Luz Solar
2.
Nucleic Acids Res ; 48(18): 10297-10312, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-32941623

RESUMEN

Beyond their key role in translation, cytosolic transfer RNAs (tRNAs) are involved in a wide range of other biological processes. Nuclear tRNA genes (tDNAs) are transcribed by the RNA polymerase III (RNAP III) and cis-elements, trans-factors as well as genomic features are known to influence their expression. In Arabidopsis, besides a predominant population of dispersed tDNAs spread along the 5 chromosomes, some clustered tDNAs have been identified. Here, we demonstrate that these tDNA clusters are transcriptionally silent and that pathways involved in the maintenance of DNA methylation play a predominant role in their repression. Moreover, we show that clustered tDNAs exhibit repressive chromatin features whilst their dispersed counterparts contain permissive euchromatic marks. This work demonstrates that both genomic and epigenomic contexts are key players in the regulation of tDNAs transcription. The conservation of most of these regulatory processes suggests that this pioneering work in Arabidopsis can provide new insights into the regulation of RNA Pol III transcription in other organisms, including vertebrates.


Asunto(s)
Epigénesis Genética/genética , ARN Polimerasa III/genética , ARN de Transferencia/genética , Transcripción Genética , Arabidopsis/genética , Núcleo Celular/genética , Cromatina/genética , Silenciador del Gen , Familia de Multigenes/genética
3.
PLoS Genet ; 15(11): e1008476, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31738755

RESUMEN

Plants are exposed to the damaging effect of sunlight that induces DNA photolesions. In order to maintain genome integrity, specific DNA repair pathways are mobilized. Upon removal of UV-induced DNA lesions, the accurate re-establishment of epigenome landscape is expected to be a prominent step of these DNA repair pathways. However, it remains poorly documented whether DNA methylation is accurately maintained at photodamaged sites and how photodamage repair pathways contribute to the maintenance of genome/methylome integrities. Using genome wide approaches, we report that UV-C irradiation leads to CHH DNA methylation changes. We identified that the specific DNA repair pathways involved in the repair of UV-induced DNA lesions, Direct Repair (DR), Global Genome Repair (GGR) and small RNA-mediated GGR prevent the excessive alterations of DNA methylation landscape. Moreover, we identified that UV-C irradiation induced chromocenter reorganization and that photodamage repair factors control this dynamics. The methylome changes rely on misregulation of maintenance, de novo and active DNA demethylation pathways highlighting that molecular processes related to genome and methylome integrities are closely interconnected. Importantly, we identified that photolesions are sources of DNA methylation changes in repressive chromatin. This study unveils that DNA repair factors, together with small RNA, act to accurately maintain both genome and methylome integrities at photodamaged silent genomic regions, strengthening the idea that plants have evolved sophisticated interplays between DNA methylation dynamics and DNA repair.


Asunto(s)
Daño del ADN/genética , Metilación de ADN/genética , Reparación del ADN/genética , Epigenoma/genética , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Cromatina/genética , Cromatina/efectos de la radiación , Daño del ADN/efectos de la radiación , Metilación de ADN/efectos de la radiación , Reparación del ADN/efectos de la radiación , Epigenoma/efectos de la radiación , Genoma de Planta/genética , Genoma de Planta/efectos de la radiación , Rayos Ultravioleta
4.
Proc Natl Acad Sci U S A ; 114(14): E2965-E2974, 2017 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-28325872

RESUMEN

As photosynthetic organisms, plants need to prevent irreversible UV-induced DNA lesions. Through an unbiased, genome-wide approach, we have uncovered a previously unrecognized interplay between Global Genome Repair and small interfering RNAs (siRNAs) in the recognition of DNA photoproducts, prevalently in intergenic regions. Genetic and biochemical approaches indicate that, upon UV irradiation, the DNA DAMAGE-BINDING PROTEIN 2 (DDB2) and ARGONAUTE 1 (AGO1) of Arabidopsis thaliana form a chromatin-bound complex together with 21-nt siRNAs, which likely facilitates recognition of DNA damages in an RNA/DNA complementary strand-specific manner. The biogenesis of photoproduct-associated siRNAs involves the noncanonical, concerted action of RNA POLYMERASE IV, RNA-DEPENDENT RNA POLYMERASE-2, and DICER-LIKE-4. Furthermore, the chromatin association/dissociation of the DDB2-AGO1 complex is under the control of siRNA abundance and DNA damage signaling. These findings reveal unexpected nuclear functions for DCL4 and AGO1, and shed light on the interplay between small RNAs and DNA repair recognition factors at damaged sites.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Argonautas/metabolismo , Reparación del ADN/fisiología , Proteínas de Unión al ADN/metabolismo , ARN de Planta/metabolismo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas Argonautas/genética , Cromatina/metabolismo , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Mutación , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de la radiación , Plantas Modificadas Genéticamente , Dímeros de Pirimidina/genética , Dímeros de Pirimidina/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Rayos Ultravioleta
5.
Int J Mol Sci ; 21(18)2020 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-32932704

RESUMEN

Ultraviolet (UV) light is a natural genotoxic agent leading to the formation of photolesions endangering the genomic integrity and thereby the survival of living organisms. To prevent the mutagenetic effect of UV, several specific DNA repair mechanisms are mobilized to accurately maintain genome integrity at photodamaged sites within the complexity of genome structures. However, a fundamental gap remains to be filled in the identification and characterization of factors at the nexus of UV-induced DNA damage, DNA repair, and epigenetics. This review brings together the impact of the epigenomic context on the susceptibility of genomic regions to form photodamage and focuses on the mechanisms of photolesions recognition through the different DNA repair pathways.


Asunto(s)
Daño del ADN/genética , Genoma/genética , Rayos Ultravioleta/efectos adversos , Animales , Reparación del ADN/genética , Epigénesis Genética/genética , Humanos
6.
Plant Cell ; 28(9): 2043-2059, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27531226

RESUMEN

In eukaryotes, DNA repair pathways help to maintain genome integrity and epigenomic patterns. However, the factors at the nexus of DNA repair and chromatin modification/remodeling remain poorly characterized. Here, we uncover a previously unrecognized interplay between the DNA repair factor DNA DAMAGE BINDING PROTEIN2 (DDB2) and the DNA methylation machinery in Arabidopsis thaliana Loss-of-function mutation in DDB2 leads to genome-wide DNA methylation alterations. Genetic and biochemical evidence indicate that at many repeat loci, DDB2 influences de novo DNA methylation by interacting with ARGONAUTE4 and by controlling the local abundance of 24-nucleotide short interfering RNAs (siRNAs). We also show that DDB2 regulates active DNA demethylation mediated by REPRESSOR OF SILENCING1 and DEMETER LIKE3. Together, these findings reveal a role for the DNA repair factor DDB2 in shaping the Arabidopsis DNA methylation landscape in the absence of applied genotoxic stress.

7.
Nucleic Acids Res ; 45(6): 3460-3472, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-27899576

RESUMEN

In the expanding repertoire of small noncoding RNAs (ncRNAs), tRNA-derived RNA fragments (tRFs) have been identified in all domains of life. Their existence in plants has been already proven but no detailed analysis has been performed. Here, short tRFs of 19-26 nucleotides were retrieved from Arabidopsis thaliana small RNA libraries obtained from various tissues, plants submitted to abiotic stress or fractions immunoprecipitated with ARGONAUTE 1 (AGO1). Large differences in the tRF populations of each extract were observed. Depending on the tRNA, either tRF-5D (due to a cleavage in the D region) or tRF-3T (via a cleavage in the T region) were found and hot spots of tRNA cleavages have been identified. Interestingly, up to 25% of the tRFs originate from plastid tRNAs and we provide evidence that mitochondrial tRNAs can also be a source of tRFs. Very specific tRF-5D deriving not only from nucleus-encoded but also from plastid-encoded tRNAs are strongly enriched in AGO1 immunoprecipitates. We demonstrate that the organellar tRFs are not found within chloroplasts or mitochondria but rather accumulate outside the organelles. These observations suggest that some organellar tRFs could play regulatory functions within the plant cell and may be part of a signaling pathway.


Asunto(s)
Arabidopsis/genética , Núcleo Celular/metabolismo , ARN de Transferencia/metabolismo , ARN no Traducido/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas Argonautas/metabolismo , Núcleo Celular/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plastidios/metabolismo , ARN/metabolismo , ARN del Cloroplasto/metabolismo , ARN Mitocondrial , ARN de Transferencia/química , ARN no Traducido/química , Estrés Fisiológico
8.
Plant J ; 92(6): 1170-1181, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29078035

RESUMEN

By controlling gene expression, DNA methylation contributes to key regulatory processes during plant development. Genomic methylation patterns are dynamic and must be properly maintained and/or re-established upon DNA replication and active removal, and therefore require sophisticated control mechanisms. Here we identify direct interplay between the DNA repair factor DNA damage-binding protein 2 (DDB2) and the ROS1-mediated active DNA demethylation pathway in Arabidopsis thaliana. We show that DDB2 forms a complex with ROS1 and AGO4 and that they act at the ROS1 locus to modulate levels of DNA methylation and therefore ROS1 expression. We found that DDB2 represses enzymatic activity of ROS1. DNA demethylation intermediates generated by ROS1 are processed by the DNA 3'-phosphatase ZDP and the apurinic/apyrimidinic endonuclease APE1L, and we also show that DDB2 interacts with both enzymes and stimulates their activities. Taken together, our results indicate that DDB2 acts as a critical regulator of ROS1-mediated active DNA demethylation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Daño del ADN , Desmetilación del ADN , Metilación de ADN , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Endonucleasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas Nucleares/genética , Nucleotidasas/genética , Nucleotidasas/metabolismo
10.
EMBO J ; 30(4): 731-43, 2011 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-21240189

RESUMEN

Protein ubiquitylation regulates a broad variety of biological processes in all eukaryotes. Recent work identified a novel class of cullin-containing ubiquitin ligases (E3s) composed of CUL4, DDB1, and one WD40 protein, believed to act as a substrate receptor. Strikingly, CUL4-based E3 ligases (CRL4s) have important functions at the chromatin level, including responses to DNA damage in metazoans and plants and, in fission yeast, in heterochromatin silencing. Among putative CRL4 receptors we identified MULTICOPY SUPPRESSOR OF IRA1 (MSI1), which belongs to an evolutionary conserved protein family. MSI1-like proteins contribute to different protein complexes, including the epigenetic regulatory Polycomb repressive complex 2 (PRC2). Here, we provide evidence that Arabidopsis MSI1 physically interacts with DDB1A and is part of a multimeric protein complex including CUL4. CUL4 and DDB1 loss-of-function lead to embryo lethality. Interestingly, as in fis class mutants, cul4 mutants exhibit autonomous endosperm initiation and loss of parental imprinting of MEDEA, a target gene of the Arabidopsis PRC2 complex. In addition, after pollination both MEDEA transcript and protein accumulate in a cul4 mutant background. Overall, our work provides the first evidence of a physical and functional link between a CRL4 E3 ligase and a PRC2 complex, thus indicating a novel role of ubiquitylation in the repression of gene expression.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Cullin/metabolismo , Proteínas de Unión al ADN/metabolismo , Impresión Genómica/fisiología , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Proteínas Cullin/genética , Proteínas Cullin/fisiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Regulación de la Expresión Génica de las Plantas , Impresión Genómica/genética , Datos de Secuencia Molecular , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/fisiología , Plantas Modificadas Genéticamente , Unión Proteica/fisiología , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas Represoras/fisiología , Homología de Secuencia de Aminoácido , Ubiquitinación/fisiología
11.
EMBO J ; 30(6): 1162-72, 2011 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-21304489

RESUMEN

Plants and many other eukaryotes can make use of two major pathways to cope with mutagenic effects of light, photoreactivation and nucleotide excision repair (NER). While photoreactivation allows direct repair by photolyase enzymes using light energy, NER requires a stepwise mechanism with several protein complexes acting at the levels of lesion detection, DNA incision and resynthesis. Here we investigated the involvement in NER of DE-ETIOLATED 1 (DET1), an evolutionarily conserved factor that associates with components of the ubiquitylation machinery in plants and mammals and acts as a negative repressor of light-driven photomorphogenic development in Arabidopsis. Evidence is provided that plant DET1 acts with CULLIN4-based ubiquitin E3 ligase, and that appropriate dosage of DET1 protein is necessary for efficient removal of UV photoproducts through the NER pathway. Moreover, DET1 is required for CULLIN4-dependent targeted degradation of the UV-lesion recognition factor DDB2. Finally, DET1 protein is degraded concomitantly with DDB2 upon UV irradiation in a CUL4-dependent mechanism. Altogether, these data suggest that DET1 and DDB2 cooperate during the excision repair process.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Proteínas Cullin/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Genoma de Planta/efectos de la radiación , Proteínas Nucleares/metabolismo , Estrés Fisiológico , Arabidopsis/fisiología , Péptidos y Proteínas de Señalización Intracelular , Modelos Biológicos
12.
Plant Cell ; 24(4): 1437-47, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22534127

RESUMEN

Homologous recombination (HR) is essential for maintaining genome integrity and variability. To orchestrate HR in the context of chromatin is a challenge, both in terms of DNA accessibility and restoration of chromatin organization after DNA repair. Histone chaperones function in nucleosome assembly/disassembly and could play a role in HR. Here, we show that the NUCLEOSOME ASSEMBLY PROTEIN1 (NAP1) family histone chaperones are required for somatic HR in Arabidopsis thaliana. Depletion of either the NAP1 group or NAP1-RELATED PROTEIN (NRP) group proteins caused a reduction in HR in plants under normal growth conditions as well as under a wide range of genotoxic or abiotic stresses. This contrasts with the hyperrecombinogenic phenotype caused by the depletion of the CHROMATIN ASSEMBLY FACTOR-1 (CAF-1) histone chaperone. Furthermore, we show that the hyperrecombinogenic phenotype caused by CAF-1 depletion relies on NRP1 and NRP2, but the telomere shortening phenotype does not. Our analysis of DNA lesions, H3K56 acetylation, and expression of DNA repair genes argues for a role of NAP1 family histone chaperones in nucleosome disassembly/reassembly during HR. Our study highlights distinct functions for different families of histone chaperones in the maintenance of genome stability and establishes a crucial function for NAP1 family histone chaperones in somatic HR.


Asunto(s)
Adenosina Trifosfatasas/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Chaperonas de Histonas/metabolismo , Recombinación Homóloga/genética , Proteínas de Arabidopsis/metabolismo , Daño del ADN , Reparación del ADN/genética , Regulación de la Expresión Génica de las Plantas , Genes Reporteros/genética , Chaperonas Moleculares/metabolismo , Mutación/genética , Fenotipo , Estrés Fisiológico/genética , Homeostasis del Telómero/genética
13.
Proc Natl Acad Sci U S A ; 108(8): 3430-5, 2011 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-21282611

RESUMEN

Flowering at the right time is crucial to ensure successful plant reproduction and seed yield and is dependent on both environmental and endogenous parameters. Among the different pathways that impinge on flowering, the autonomous pathway promotes floral transition independently of day length through the repression of the central flowering repressor flowering locus C (FLC). FLC blocks floral transition by repressing flowering time integrators such as flowering locus T (FT). MSI4/FVE is a key regulator of the autonomous pathway that reduces FLC expression. Here we report that the MSI4 protein is a DDB1 and CUL4-associated factor that represses FLC expression through its association with a CLF-Polycomb Repressive Complex 2 (PRC2) in Arabidopsis. Thus, the lack of MSI4 or decreased CUL4 activity reduces H3K27 trimethylation on FLC, but also on its downstream target FT, resulting in increased expression of both genes. Moreover, CUL4 interacts with FLC chromatin in an MSI4-dependant manner, and the interaction between MSI4 and CUL4-DDB1 is necessary for the epigenetic repression of FLC. Overall our work provides evidence for a unique functional interaction between the cullin-RING ubiquitin ligase (CUL4-DDB1(MSI4)) and a CLF-PRC2 complex in the regulation of flowering timing in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Portadoras/metabolismo , Proteínas Cullin/metabolismo , Proteínas de Unión al ADN/metabolismo , Epigenómica , Flores/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiología , Proteínas Portadoras/fisiología , Proteínas Cullin/fisiología , Proteínas de Unión al ADN/fisiología , Regulación de la Expresión Génica de las Plantas , Histonas/metabolismo , Proteínas de Dominio MADS/genética , Metilación , Factores de Transcripción
14.
Nat Plants ; 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39367258

RESUMEN

Plants have evolved sophisticated DNA repair mechanisms to cope with the deleterious effects of ultraviolet (UV)-induced DNA damage. Indeed, DNA repair pathways cooperate with epigenetic-related processes to efficiently maintain genome integrity. However, it remains to be deciphered how photodamages are recognized within different chromatin landscapes, especially in compacted genomic regions such as constitutive heterochromatin. Here we combined cytogenetics and epigenomics to identify that UV-C irradiation induces modulation of the main epigenetic mark found in constitutive heterochromatin, H3K9me2. We demonstrated that the histone demethylase, Jumonji27 (JMJ27), contributes to the UV-induced reduction of H3K9me2 content at chromocentres. In addition, we identified that JMJ27 forms a complex with the photodamage recognition factor, DNA Damage Binding protein 2 (DDB2), and that the fine-tuning of H3K9me2 contents orchestrates DDB2 dynamics on chromatin in response to UV-C exposure. Hence, this study uncovers the unexpected existence of an interplay between photodamage repair and H3K9me2 homeostasis.

15.
Nature ; 442(7106): 1046-9, 2006 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-16892047

RESUMEN

Owing to their sessile nature, plants are constantly exposed to a multitude of environmental stresses to which they react with a battery of responses. The result is plant tolerance to conditions such as excessive or inadequate light, water, salt and temperature, and resistance to pathogens. Not only is plant physiology known to change under abiotic or biotic stress, but changes in the genome have also been identified. However, it was not determined whether plants from successive generations of the original, stressed plants inherited the capacity for genomic change. Here we show that in Arabidopsis thaliana plants treated with short-wavelength radiation (ultraviolet-C) or flagellin (an elicitor of plant defences), somatic homologous recombination of a transgenic reporter is increased in the treated population and these increased levels of homologous recombination persist in the subsequent, untreated generations. The epigenetic trait of enhanced homologous recombination could be transmitted through both the maternal and the paternal crossing partner, and proved to be dominant. The increase of the hyper-recombination state in generations subsequent to the treated generation was independent of the presence of the transgenic allele (the recombination substrate under consideration) in the treated plant. We conclude that environmental factors lead to increased genomic flexibility even in successive, untreated generations, and may increase the potential for adaptation.


Asunto(s)
Aclimatación/efectos de los fármacos , Aclimatación/efectos de la radiación , Arabidopsis/efectos de los fármacos , Arabidopsis/efectos de la radiación , Epigénesis Genética , Recombinación Genética/efectos de los fármacos , Recombinación Genética/efectos de la radiación , Alelos , Arabidopsis/genética , Arabidopsis/fisiología , Cruzamientos Genéticos , Flagelina/farmacología , Luz , Plantas Modificadas Genéticamente , Polen/fisiología , Recombinación Genética/genética , Recombinación Genética/fisiología , Transgenes/genética , Rayos Ultravioleta
16.
Epigenomes ; 6(4)2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36278680

RESUMEN

The combination of ever-increasing microscopy resolution with cytogenetical tools allows for detailed analyses of nuclear functional partitioning. However, the need for reliable qualitative and quantitative methodologies to detect and interpret chromatin sub-nuclear organization dynamics is crucial to decipher the underlying molecular processes. Having access to properly automated tools for accurate and fast recognition of complex nuclear structures remains an important issue. Cognitive biases associated with human-based curation or decisions for object segmentation tend to introduce variability and noise into image analysis. Here, we report the development of two complementary segmentation methods, one semi-automated (iCRAQ) and one based on deep learning (Nucl.Eye.D), and their evaluation using a collection of A. thaliana nuclei with contrasted or poorly defined chromatin compartmentalization. Both methods allow for fast, robust and sensitive detection as well as for quantification of subtle nucleus features. Based on these developments, we highlight advantages of semi-automated and deep learning-based analyses applied to plant cytogenetics.

17.
Plant J ; 63(3): 392-404, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20487384

RESUMEN

Obligate photoautotrophs such as plants must capture energy from sunlight and are therefore exposed to the damaging collateral effects of ultraviolet (UV) irradiation, especially on DNA. Here we investigated the interconnection between light signaling and DNA repair, two concomitant pathways during photomorphogenesis, the developmental transition associated with the first light exposure. It is shown that combination of an enhanced sunscreen effect and photoreactivation confers a greater level of tolerance to damaging UV-C doses in the constitutive photomorphogenic de-etiolated1-1 (det1--1) Arabidopsis mutant. In darkness, expression of the PHR1 and UVR3 photolyase genes, responsible for photoreactivation, is maintained at a basal level through the positive action of HY5 and HYH photomorphogenesis-promoting transcription factors and the repressive effects of DET1 and COP1. Upon light exposure, HY5 and HYH activate PHR1 gene expression while the constitutively expressed nuclear-localized DET1 protein exerts a strong inhibitory effect. Altogether, the data presented indicate a dual role for DET1 in controlling expression of light-responsive and DNA repair genes, and describe more precisely the contribution of photomorphogenic regulators in the control of light-dependent DNA repair.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Liasas de Carbono-Carbono/genética , Genes de Plantas , Factores de Transcripción/genética , Rayos Ultravioleta , Arabidopsis/enzimología , Arabidopsis/metabolismo , Daño del ADN , Reparación del ADN , Transducción de Señal
18.
PLoS Genet ; 4(6): e1000093, 2008 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-18551167

RESUMEN

Plants use the energy in sunlight for photosynthesis, but as a consequence are exposed to the toxic effect of UV radiation especially on DNA. The UV-induced lesions on DNA affect both transcription and replication and can also have mutagenic consequences. Here we investigated the regulation and the function of the recently described CUL4-DDB1-DDB2 E3 ligase in the maintenance of genome integrity upon UV-stress using the model plant Arabidopsis. Physiological, biochemical, and genetic evidences indicate that this protein complex is involved in global genome repair (GGR) of UV-induced DNA lesions. Moreover, we provide evidences for crosstalks between GGR, the plant-specific photo reactivation pathway and the RAD1-RAD10 endonucleases upon UV exposure. Finally, we report that DDB2 degradation upon UV stress depends not only on CUL4, but also on the checkpoint protein kinase Ataxia telangiectasia and Rad3-related (ATR). Interestingly, we found that DDB1A shuttles from the cytoplasm to the nucleus in an ATR-dependent manner, highlighting an upstream level of control and a novel mechanism of regulation of this E3 ligase.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Proteínas Cullin/metabolismo , Proteínas de Unión al ADN/metabolismo , Genoma de Planta/efectos de la radiación , Rayos Ultravioleta , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/análisis , Proteínas de Arabidopsis/genética , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cullin/análisis , Proteínas Cullin/genética , Daño del ADN/efectos de la radiación , Reparación del ADN/efectos de la radiación , Proteínas de Unión al ADN/análisis , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Mutagénesis Insercional , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/efectos de la radiación , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de Proteínas , Tolerancia a Radiación , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
19.
Trends Genet ; 21(3): 172-81, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15734576

RESUMEN

Homologous recombination creates covalent linkages between DNA in regions of highly similar or identical sequence. Recent results from several laboratories, many of them based on forward and reverse genetics in Arabidopsis, give insights into the mechanisms of the enzymatic machinery and the involvement of chromatin in somatic and meiotic DNA recombination. Also, signaling pathways and interconnections between repair pathways are being discovered. In addition, recent work shows that biotic and abiotic influences from the environment can dramatically affect plant genomes. The resulting changes in the DNA sequence, exerted at the level of somatic or meiotic tissue, might contribute to evolution.


Asunto(s)
Arabidopsis/genética , Recombinación Genética , Reparación del ADN/fisiología , Genes de Plantas/fisiología
20.
Mutat Res ; 624(1-2): 101-13, 2007 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-17568626

RESUMEN

We analyzed the influence of acute and chronic ionizing radiation (IR) on plant genome stability and global genome expression. Plants from the "chronic" group were grown for 21 days on (137)Cs-artificially contaminated soil, and received a cumulative dose of 1Gy. The "acute" plant group was exposed to an equal dose of radiation delivered as a single pulse. Analysis of homologous recombination (HR) events revealed a significantly higher increase in HR frequency (HRF) in the "chronic" group as compared to "acute" group. To understand the observed difference we performed global genome expression analysis. RNA profiling at 2h and 24h after acute irradiation showed two-third of up- and down-regulated genes to be similarly regulated at both time points. In contrast, less than 10% of the genes up- or down-regulated at 2h or 24h post-acute irradiation were similarly changed after chronic exposure. Promoter analysis revealed substantial differences in the specific regulatory elements found in acute and chronic transcriptomes. Further comparison of the data with existing profiles for several stresses, including UVC and heavy metals, showed substantial transcriptome similarities with the acute but not the chronic transcriptome. Plants exposed to chronic but not acute radiation showed early flowering; transcriptome analysis also revealed induction of flowering genes in "chronic" group.


Asunto(s)
Perfilación de la Expresión Génica , Plantas/genética , Plantas/efectos de la radiación , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Secuencia de Bases , Cartilla de ADN/genética , ADN de Plantas/genética , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Genes de Plantas/efectos de la radiación , Inestabilidad Genómica/efectos de la radiación , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa , Recombinación Genética/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA