Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Biophys J ; 118(9): 2086-2102, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-31699335

RESUMEN

Reprogramming of human somatic cells to induced pluripotent stem cells (iPSCs) generates valuable resources for disease modeling, toxicology, cell therapy, and regenerative medicine. However, the reprogramming process can be stochastic and inefficient, creating many partially reprogrammed intermediates and non-reprogrammed cells in addition to fully reprogrammed iPSCs. Much of the work to identify, evaluate, and enrich for iPSCs during reprogramming relies on methods that fix, destroy, or singularize cell cultures, thereby disrupting each cell's microenvironment. Here, we develop a micropatterned substrate that allows for dynamic live-cell microscopy of hundreds of cell subpopulations undergoing reprogramming while preserving many of the biophysical and biochemical cues within the cells' microenvironment. On this substrate, we were able to both watch and physically confine cells into discrete islands during the reprogramming of human somatic cells from skin biopsies and blood draws obtained from healthy donors. Using high-content analysis, we identified a combination of eight nuclear characteristics that can be used to generate a computational model to predict the progression of reprogramming and distinguish partially reprogrammed cells from those that are fully reprogrammed. This approach to track reprogramming in situ using micropatterned substrates could aid in biomanufacturing of therapeutically relevant iPSCs and be used to elucidate multiscale cellular changes (cell-cell interactions as well as subcellular changes) that accompany human cell fate transitions.


Asunto(s)
Reprogramación Celular , Células Madre Pluripotentes Inducidas , Diferenciación Celular , Humanos
2.
Proc Natl Acad Sci U S A ; 114(21): 5431-5436, 2017 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-28396409

RESUMEN

The aryl hydrocarbon receptor (AHR) belongs to the PAS (PER-ARNT-SIM) family transcription factors and mediates broad responses to numerous environmental pollutants and cellular metabolites, modulating diverse biological processes from adaptive metabolism, acute toxicity, to normal physiology of vascular and immune systems. The AHR forms a transcriptionally active heterodimer with ARNT (AHR nuclear translocator), which recognizes the dioxin response element (DRE) in the promoter of downstream genes. We determined the crystal structure of the mammalian AHR-ARNT heterodimer in complex with the DRE, in which ARNT curls around AHR into a highly intertwined asymmetric architecture, with extensive heterodimerization interfaces and AHR interdomain interactions. Specific recognition of the DRE is determined locally by the DNA-binding residues, which discriminates it from the closely related hypoxia response element (HRE), and is globally affected by the dimerization interfaces and interdomain interactions. Changes at the interdomain interactions caused either AHR constitutive nuclear localization or failure to translocate to nucleus, underlying an allosteric structural pathway for mediating ligand-induced exposure of nuclear localization signal. These observations, together with the global higher flexibility of the AHR PAS-A and its loosely packed structural elements, suggest a dynamic structural hierarchy for complex scenarios of AHR activation induced by its diverse ligands.


Asunto(s)
Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Animales , Dimerización , Regulación de la Expresión Génica , Humanos , Ratones , Estructura Cuaternaria de Proteína
3.
CRISPR J ; 6(5): 473-485, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37676985

RESUMEN

Genome-edited human-induced pluripotent stem cells (iPSCs) have broad applications in disease modeling, drug discovery, and regenerative medicine. Despite the development of clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system, the gene editing process is inefficient and can take several weeks to months to generate edited iPSC clones. We developed a strategy to improve the efficiency of the iPSC gene editing process via application of a small-molecule, trichostatin A (TSA), a Class I and II histone deacetylase inhibitor. We observed that TSA decreased global chromatin condensation and further resulted in increased gene-editing efficiency of iPSCs by twofold to fourfold while concurrently ensuring no increased off-target effects. The edited iPSCs could be clonally expanded while maintaining genomic integrity and pluripotency. The rapid generation of therapeutically relevant gene-edited iPSCs could be enabled by these findings.


Asunto(s)
Edición Génica , Células Madre Pluripotentes Inducidas , Humanos , Edición Génica/métodos , Sistemas CRISPR-Cas/genética
4.
GEN Biotechnol ; 1(2): 176-191, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35586336

RESUMEN

The process of reprogramming patient samples to human-induced pluripotent stem cells (iPSCs) is stochastic, asynchronous, and inefficient, leading to a heterogeneous population of cells. In this study, we track the reprogramming status of patient-derived erythroid progenitor cells (EPCs) at the single-cell level during reprogramming with label-free live-cell imaging of cellular metabolism and nuclear morphometry to identify high-quality iPSCs. EPCs isolated from human peripheral blood of three donors were used for our proof-of-principle study. We found distinct patterns of autofluorescence lifetime for the reduced form of nicotinamide adenine dinucleotide (phosphate) and flavin adenine dinucleotide during reprogramming. Random forest models classified iPSCs with ∼95% accuracy, which enabled the successful isolation of iPSC lines from reprogramming cultures. Reprogramming trajectories resolved at the single-cell level indicated significant reprogramming heterogeneity along different branches of cell states. This combination of micropatterning, autofluorescence imaging, and machine learning provides a unique, real-time, and nondestructive method to assess the quality of iPSCs in a biomanufacturing process, which could have downstream impacts in regenerative medicine, cell/gene therapy, and disease modeling.

5.
Nat Commun ; 8(1): 1711, 2017 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-29167458

RESUMEN

Writing specific DNA sequences into the human genome is challenging with non-viral gene-editing reagents, since most of the edited sequences contain various imprecise insertions or deletions. We developed a modular RNA aptamer-streptavidin strategy, termed S1mplex, to complex CRISPR-Cas9 ribonucleoproteins with a nucleic acid donor template, as well as other biotinylated molecules such as quantum dots. In human cells, tailored S1mplexes increase the ratio of precisely edited to imprecisely edited alleles up to 18-fold higher than standard gene-editing methods, and enrich cell populations containing multiplexed precise edits up to 42-fold. These advances with versatile, preassembled reagents could greatly reduce the time and cost of in vitro or ex vivo gene-editing applications in precision medicine and drug discovery and aid in the development of increased and serial dosing regimens for somatic gene editing in vivo.


Asunto(s)
Aptámeros de Nucleótidos/genética , Sistemas CRISPR-Cas , Edición Génica/métodos , Oligonucleótidos/genética , Ribonucleoproteínas/genética , Aptámeros de Nucleótidos/metabolismo , Secuencia de Bases , Biotinilación , Células Cultivadas , Células HEK293 , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Oligonucleótidos/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Medicina de Precisión/métodos , Ribonucleoproteínas/metabolismo , Estreptavidina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA