Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mult Scler ; 26(10): 1187-1196, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-31287367

RESUMEN

BACKGROUND: Neuromyelitis optica spectrum disorder (NMOSD) is a relapsing inflammatory central nervous system (CNS) disease for which there is no cure. Immunoglobulin G autoantibodies specific for the water channel aquaporin-4 are a serum biomarker, believed to induce complement-dependent astrocyte damage with secondary demyelination. OBJECTIVE: To investigate the effect of angiotensin AT2 receptor (AT2R) stimulation on NMOSD-like pathology and its underlying mechanism. METHODS: NMOSD-like pathology was induced in mice by intracerebral injection of immunoglobulin-G isolated from NMOSD patient serum, with complement. This mouse model produces the characteristic histological features of NMOSD. A specific AT2R agonist, Compound 21 (C21), was given intracerebrally at day 0 and by intrathecal injection at day 2. RESULTS: Loss of aquaporin-4 and glial fibrillary acidic protein was attenuated by treatment with C21. Administration of C21 induced mRNA for interleukin-10 in the brain. NMOSD-like pathology was exacerbated in interleukin-10-deficient mice, suggesting a protective role. C21 treatment did not attenuate NMOSD-like pathology in interleukin-10-deficient mice, indicating that the protective effect of AT2R stimulation was dependent on interleukin-10. CONCLUSION: Our findings identify AT2R as a novel potential therapeutic target for the treatment of NMOSD. Interleukin-10 signaling is an essential part of the protective mechanism counteracting NMOSD pathology.


Asunto(s)
Neuromielitis Óptica , Animales , Acuaporina 4/genética , Autoanticuerpos , Humanos , Interleucina-10 , Ratones , Recurrencia Local de Neoplasia , Neuromielitis Óptica/tratamiento farmacológico , Receptor de Angiotensina Tipo 2
2.
Sci Adv ; 10(22): eadk3229, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38820149

RESUMEN

Amyotrophic lateral sclerosis (ALS) is characterized by the progressive loss of somatic motor neurons. A major focus has been directed to motor neuron intrinsic properties as a cause for degeneration, while less attention has been given to the contribution of spinal interneurons. In the present work, we applied multiplexing detection of transcripts and machine learning-based image analysis to investigate the fate of multiple spinal interneuron populations during ALS progression in the SOD1G93A mouse model. The analysis showed that spinal inhibitory interneurons are affected early in the disease, before motor neuron death, and are characterized by a slow progressive degeneration, while excitatory interneurons are affected later with a steep progression. Moreover, we report differential vulnerability within inhibitory and excitatory subpopulations. Our study reveals a strong interneuron involvement in ALS development with interneuron specific degeneration. These observations point to differential involvement of diverse spinal neuronal circuits that eventually may be determining motor neuron degeneration.


Asunto(s)
Esclerosis Amiotrófica Lateral , Modelos Animales de Enfermedad , Interneuronas , Ratones Transgénicos , Neuronas Motoras , Médula Espinal , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Ratones , Interneuronas/metabolismo , Interneuronas/patología , Médula Espinal/patología , Médula Espinal/metabolismo , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Humanos , Progresión de la Enfermedad , Degeneración Nerviosa/patología
3.
Nat Commun ; 15(1): 4867, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849367

RESUMEN

Loss of connectivity between spinal V1 inhibitory interneurons and motor neurons is found early in disease in the SOD1G93A mice. Such changes in premotor inputs can contribute to homeostatic imbalance of motor neurons. Here, we show that the Extended Synaptotagmin 1 (Esyt1) presynaptic organizer is downregulated in V1 interneurons. V1 restricted overexpression of Esyt1 rescues inhibitory synapses, increases motor neuron survival, and ameliorates motor phenotypes. Two gene therapy approaches overexpressing ESYT1 were investigated; one for local intraspinal delivery, and the other for systemic administration using an AAV-PHP.eB vector delivered intravenously. Improvement of motor functions is observed in both approaches, however systemic administration appears to significantly reduce onset of motor impairment in the SOD1G93A mice in absence of side effects. Altogether, we show that stabilization of V1 synapses by ESYT1 overexpression has the potential to improve motor functions in ALS, demonstrating that interneurons can be a target to attenuate ALS symptoms.


Asunto(s)
Esclerosis Amiotrófica Lateral , Modelos Animales de Enfermedad , Interneuronas , Ratones Transgénicos , Neuronas Motoras , Sinapsis , Animales , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/fisiopatología , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/terapia , Interneuronas/metabolismo , Neuronas Motoras/metabolismo , Ratones , Sinapsis/metabolismo , Fenotipo , Masculino , Terapia Genética/métodos , Humanos , Femenino , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo
4.
Nat Commun ; 12(1): 3251, 2021 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-34059686

RESUMEN

ALS is characterized by progressive inability to execute movements. Motor neurons innervating fast-twitch muscle-fibers preferentially degenerate. The reason for this differential vulnerability and its consequences on motor output is not known. Here, we uncover that fast motor neurons receive stronger inhibitory synaptic inputs than slow motor neurons, and disease progression in the SOD1G93A mouse model leads to specific loss of inhibitory synapses onto fast motor neurons. Inhibitory V1 interneurons show similar innervation pattern and loss of synapses. Moreover, from postnatal day 63, there is a loss of V1 interneurons in the SOD1G93A mouse. The V1 interneuron degeneration appears before motor neuron death and is paralleled by the development of a specific locomotor deficit affecting speed and limb coordination. This distinct ALS-induced locomotor deficit is phenocopied in wild-type mice but not in SOD1G93A mice after appearing of the locomotor phenotype when V1 spinal interneurons are silenced. Our study identifies a potential source of non-autonomous motor neuronal vulnerability in ALS and links ALS-induced changes in locomotor phenotype to inhibitory V1-interneurons.


Asunto(s)
Esclerosis Amiotrófica Lateral/fisiopatología , Interneuronas/patología , Locomoción/fisiología , Neuronas Motoras/patología , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Modelos Animales de Enfermedad , Femenino , Proteínas de Homeodominio/metabolismo , Humanos , Masculino , Ratones , Ratones Transgénicos , Fibras Musculares de Contracción Rápida/fisiología , Unión Neuromuscular/patología , Unión Neuromuscular/fisiopatología , Médula Espinal/citología , Superóxido Dismutasa/genética , Superóxido Dismutasa-1/genética
5.
Mult Scler Relat Disord ; 53: 103033, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34090131

RESUMEN

BACKGROUND: Neuromyelitis optica spectrum disorder (NMOSD) is an antibody-mediated autoimmune inflammatory disease of the central nervous system (CNS), resulting in primary astrocytopathy. We have previously shown that Angiotensin AT2-receptor (AT2R) stimulation with the specific agonist Compound 21 (C21) attenuated NMOSD-like pathology. Recent studies have proposed that the mechanism behind protective effects of AT2R includes induction of brain derived neurotrophic factor (BDNF). Astrocytes are a major cellular source of BDNF. In this study we used mice with conditional BDNF deficiency in astrocytes (GfapF) to examine the involvement of astrocyte-derived BDNF in NMOSD-like pathology and in mediating the protective effect of AT2R stimulation. METHODS: Anti-aquaporin-4 IgG (AQP4-IgG) from an NMOSD patient and human complement (C) were co-injected intrastriatally to GfapF and wildtype littermate BDNFfl/fl mice (WT), together with either C21 or vehicle at day 0, followed by intrathecal injection of C21 or vehicle at day 2 and tissue collection at day 4. RESULTS: Intracerebral/intrathecal injection of C21, alone or in combination with AQP4-IgG + C, induced BDNF expression in WT mice. Injection of AQP4-IgG + C induced NMOSD-like pathology, including loss of AQP4 and GFAP. There was no difference in the severity of pathological changes between GfapF and WT mice. C21 treatment significantly and equally ameliorated NMOSD-like pathology in both WT and GfapF mice. CONCLUSION: Our findings indicate that astrocyte-derived BDNF neither reduces the severity of NMOSD-like pathology nor is it necessary for the protective effect of AT2R stimulation in NMOSD-like pathology.


Asunto(s)
Neuromielitis Óptica , Angiotensinas , Animales , Acuaporina 4/genética , Astrocitos , Autoanticuerpos , Factor Neurotrófico Derivado del Encéfalo , Humanos , Ratones , Neuromielitis Óptica/tratamiento farmacológico , Receptor de Angiotensina Tipo 2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA