Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(W1): W65-W69, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38587202

RESUMEN

Teleost fish represent one of the largest and most diverse clades of vertebrates, which makes them great models in various research areas such as ecology and evolution. Recent sequencing endeavors provided high-quality genomes for species covering the main fish evolutionary lineages, opening up large-scale comparative genomics studies. However, transcriptomic data across fish species and organs are heterogenous and have not been integrated with newly sequenced genomes making gene expression quantification and comparative analyses particularly challenging. Thus, resources integrating genomic and transcriptomic data across fish species and organs are still lacking. Here, we present FEVER, a web-based resource allowing evolutionary transcriptomics across species and tissues. First, based on query genes FEVER reconstructs gene trees providing orthologous and paralogous relationships as well as their evolutionary dynamics across 13 species covering the major fish lineages, and 4 model species as evolutionary outgroups. Second, it provides unbiased gene expression across 11 tissues using up-to-date fish genomes. Finally, genomic and transcriptomic data are combined together allowing the exploration of gene expression evolution following speciation and duplication events. FEVER is freely accessible at https://fever.sk8.inrae.fr/.


Asunto(s)
Evolución Molecular , Peces , Internet , Transcriptoma , Animales , Peces/genética , Transcriptoma/genética , Perfilación de la Expresión Génica/métodos , Bases de Datos Genéticas , Filogenia , Genómica/métodos , Programas Informáticos , Genoma/genética
2.
Nucleic Acids Res ; 52(2): 738-754, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38059397

RESUMEN

Understanding microRNA (miRNA) functions has been hampered by major difficulties in identifying their biological target(s). Currently, the main limitation is the lack of a suitable strategy to identify biologically relevant targets among a high number of putative targets. Here we provide a proof of concept of successful de novo (i.e. without prior knowledge of its identity) miRNA phenotypic target (i.e. target whose de-repression contributes to the phenotypic outcomes) identification from RNA-seq data. Using the medaka mir-202 knock-out (KO) model in which inactivation leads to a major organism-level reproductive phenotype, including reduced egg production, we introduced novel criteria including limited fold-change in KO and low interindividual variability in gene expression to reduce the list of 2853 putative targets to a short list of 5. We selected tead3b, a member of the evolutionarily-conserved Hippo pathway, known to regulate ovarian functions, due to its remarkably strong and evolutionarily conserved binding affinity for miR-202-5p. Deleting the miR-202-5p binding site in the 3' UTR of tead3b, but not of other Hippo pathway members sav1 and vgll4b, triggered a reduced egg production phenotype. This is one of the few successful examples of de novo functional assignment of a miRNA phenotypic target in vivo in vertebrates.


Asunto(s)
Vía de Señalización Hippo , MicroARNs , Oryzias , Animales , Sitios de Unión , MicroARNs/genética , MicroARNs/metabolismo , Fenotipo , RNA-Seq , Oryzias/metabolismo
3.
Genome Res ; 2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-35961774

RESUMEN

Teleost fishes are ancient tetraploids descended from an ancestral whole-genome duplication that may have contributed to the impressive diversification of this clade. Whole-genome duplications can occur via self-doubling (autopolyploidy) or via hybridization between different species (allopolyploidy). The mode of tetraploidization conditions evolutionary processes by which duplicated genomes return to diploid meiotic pairing, and subsequent genetic divergence of duplicated genes (cytological and genetic rediploidization). How teleosts became tetraploid remains unresolved, leaving a fundamental gap in the interpretation of their functional evolution. As a result of the whole-genome duplication, identifying orthologous and paralogous genomic regions across teleosts is challenging, hindering genome-wide investigations into their polyploid history. Here, we combine tailored gene phylogeny methodology together with a state-of-the-art ancestral karyotype reconstruction to establish the first high-resolution comparative atlas of paleopolyploid regions across 74 teleost genomes. We then leverage this atlas to investigate how rediploidization occurred in teleosts at the genome-wide level. We uncover that some duplicated regions maintained tetraploidy for more than 60 million years, with three chromosome pairs diverging genetically only after the separation of major teleost families. This evidence suggests that the teleost ancestor was an autopolyploid. Further, we find evidence for biased gene retention along several duplicated chromosomes, contradicting current paradigms that asymmetrical evolution is specific to allopolyploids. Altogether, our results offer novel insights into genome evolutionary dynamics following ancient polyploidizations in vertebrates.

4.
Mol Biol Evol ; 39(2)2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35020925

RESUMEN

MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression involved in countless biological processes and are widely studied across metazoans. Although miRNA research continues to grow, the large community of fish miRNA researchers lacks exhaustive resources consistent among species. To fill this gap, we developed FishmiRNA, an evolutionarily supported miRNA annotation and expression database for ray-finned fishes: www.fishmirna.org. The self-explanatory database contains detailed, manually curated miRNA annotations with orthology relationships rigorously established by sequence similarity and conserved syntenies, and expression data provided for each detected mature miRNA. In just few clicks, users can download the annotation and expression database in several convenient formats either in its entirety or a subset. Simple filters and Blast search options also permit the simultaneous exploration and visual comparison of expression data for up to any ten mature miRNAs across species and organs. FishmiRNA was specifically designed for ease of use to reach a wide audience.


Asunto(s)
MicroARNs , Animales , Peces/genética , Peces/metabolismo , MicroARNs/genética , MicroARNs/metabolismo
5.
BMC Genomics ; 23(1): 9, 2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-34983401

RESUMEN

BACKGROUND: Sexual maturation causes loss of fish muscle mass and deterioration of fillet quality attributes that prevent market success. We recently showed that fillet yield and flesh quality recover in female trout after spawning. To gain insight into the molecular mechanisms regulating flesh quality recovery, we used an Agilent-based microarray platform to conduct a large-scale time course analysis of gene expression in female trout white muscle from spawning to 33 weeks post-spawning. RESULTS: In sharp contrast to the situation at spawning, muscle transcriptome of female trout at 33 weeks after spawning was highly similar to that of female trout of the same cohort that did not spawn, which is consistent with the post-spawning flesh quality recovery. Large-scale time course analysis of gene expression in trout muscle during flesh quality recovery following spawning led to the identification of approximately 3340 unique differentially expressed genes that segregated into four major clusters with distinct temporal expression profiles and functional categories. The first cluster contained approximately 1350 genes with high expression at spawning and downregulation after spawning and was enriched with genes linked to mitochondrial ATP synthesis, fatty acid catabolism and proteolysis. A second cluster of approximately 540 genes with transient upregulation 2 to 8 weeks after spawning was enriched with genes involved in transcription, RNA processing, translation, ribosome biogenesis and protein folding. A third cluster containing approximately 300 genes upregulated 4 to 13 weeks after spawning was enriched with genes encoding ribosomal subunits or regulating protein folding. Finally, a fourth cluster that contained approximately 940 genes with upregulation 8 to 24 weeks after spawning, was dominated by genes encoding myofibrillar proteins and extracellular matrix components and genes involved in glycolysis. CONCLUSION: Overall, our study indicates that white muscle tissue restoration and flesh quality recovery after spawning are associated with transcriptional changes promoting anaerobic ATP production, muscle fibre hypertrophic growth and extracellular matrix remodelling. The generation of the first database of genes associated with post-spawning muscle recovery may provide insights into the molecular and cellular mechanisms controlling muscle yield and fillet quality in fish and provide a useful list of potential genetic markers for these traits.


Asunto(s)
Oncorhynchus mykiss , Animales , Femenino , Perfilación de la Expresión Génica , Humanos , Análisis por Micromatrices , Músculos , Oncorhynchus mykiss/genética , Transcriptoma
6.
Mol Biol Evol ; 38(8): 3308-3331, 2021 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-33871629

RESUMEN

MicroRNAs (miRNAs) are important gene expression regulators implicated in many biological processes, but we lack a global understanding of how miRNA genes evolve and contribute to developmental canalization and phenotypic diversification. Whole-genome duplication events likely provide a substrate for species divergence and phenotypic change by increasing gene numbers and relaxing evolutionary pressures. To understand the consequences of genome duplication on miRNA evolution, we studied miRNA genes following the teleost genome duplication (TGD). Analysis of miRNA genes in four teleosts and in spotted gar, whose lineage diverged before the TGD, revealed that miRNA genes were retained in ohnologous pairs more frequently than protein-coding genes, and that gene losses occurred rapidly after the TGD. Genomic context influenced retention rates, with clustered miRNA genes retained more often than nonclustered miRNA genes and intergenic miRNA genes retained more frequently than intragenic miRNA genes, which often shared the evolutionary fate of their protein-coding host. Expression analyses revealed both conserved and divergent expression patterns across species in line with miRNA functions in phenotypic canalization and diversification, respectively. Finally, major strands of miRNA genes experienced stronger purifying selection, especially in their seeds and 3'-complementary regions, compared with minor strands, which nonetheless also displayed evolutionary features compatible with constrained function. This study provides the first genome-wide, multispecies analysis of the mechanisms influencing metazoan miRNA evolution after whole-genome duplication.


Asunto(s)
Evolución Biológica , Peces/genética , Genoma , MicroARNs/genética , Animales , Secuencia de Bases , Secuencia Conservada , Peces/metabolismo , Duplicación de Gen , Gónadas/metabolismo , Familia de Multigenes , Selección Genética , Especificidad de la Especie
7.
PLoS Biol ; 17(4): e3000185, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30947255

RESUMEN

Dmrt1 is a highly conserved transcription factor, which is critically involved in regulation of gonad development of vertebrates. In medaka, a duplicate of dmrt1-acting as master sex-determining gene-has a tightly timely and spatially controlled gonadal expression pattern. In addition to transcriptional regulation, a sequence motif in the 3' UTR (D3U-box) mediates transcript stability of dmrt1 mRNAs from medaka and other vertebrates. We show here that in medaka, two RNA-binding proteins with antagonizing properties target this D3U-box, promoting either RNA stabilization in germ cells or degradation in the soma. The D3U-box is also conserved in other germ-cell transcripts, making them responsive to the same RNA binding proteins. The evolutionary conservation of the D3U-box motif within dmrt1 genes of metazoans-together with preserved expression patterns of the targeting RNA binding proteins in subsets of germ cells-suggest that this new mechanism for controlling RNA stability is not restricted to fishes but might also apply to other vertebrates.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/genética , Oryzias/genética , Procesos de Determinación del Sexo/genética , Regiones no Traducidas 3'/genética , Animales , Evolución Biológica , Femenino , Proteínas de Peces/genética , Células Germinativas/metabolismo , Masculino , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Estabilidad del ARN/genética , ARN Mensajero/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Vertebrados/metabolismo
8.
BMC Biol ; 19(1): 235, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34781956

RESUMEN

BACKGROUND: Circulating miRNAs (c-miRNAs) are found in most, if not all, biological fluids and are becoming well-established non-invasive biomarkers of many human pathologies. However, their features in non-pathological contexts and whether their expression profiles reflect normal life history events have received little attention, especially in non-mammalian species. The aim of the present study was to investigate the potential of c-miRNAs to serve as biomarkers of reproductive and metabolic states in fish. RESULTS: The blood plasma was sampled throughout the reproductive cycle of female rainbow trout subjected to two different feeding regimes that triggered contrasting metabolic states. In addition, ovarian fluid was sampled at ovulation, and all samples were subjected to small RNA-seq analysis, leading to the establishment of a comprehensive miRNA repertoire (i.e., miRNAome) and enabling subsequent comparative analyses to a panel of RNA-seq libraries from a wide variety of tissues and organs. We showed that biological fluid miRNAomes are complex and encompass a high proportion of the overall rainbow trout miRNAome. While sharing a high proportion of common miRNAs, the blood plasma and ovarian fluid miRNAomes exhibited strong fluid-specific signatures. We further revealed that the blood plasma miRNAome significantly changed depending on metabolic and reproductive states. We subsequently identified three evolutionarily conserved muscle-specific miRNAs or myomiRs (miR-1-1/2-3p, miR-133a-1/2-3p, and miR-206-3p) that accumulated in the blood plasma in response to high feeding rates, making these myomiRs strong candidate biomarkers of active myogenesis. We also identified miR-202-5p as a candidate biomarker for reproductive success that could be used to predict ovulation and/or egg quality. CONCLUSIONS: Together, these promising results reveal the high potential of c-miRNAs, including evolutionarily conserved myomiRs, as physiologically relevant biomarker candidates and pave the way for the use of c-miRNAs for non-invasive phenotyping in various fish species.


Asunto(s)
MicroARNs , Oncorhynchus mykiss , Animales , Biomarcadores , Femenino , Humanos , MicroARNs/genética , Oncorhynchus mykiss/genética , Reproducción/genética
9.
Genomics ; 113(6): 3811-3826, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34508856

RESUMEN

The aim of this study was to investigate the respective contribution of maternally-inherited mRNAs and proteins to egg molecular cargo and to its developmental competence in fish using pikeperch as a model. Our study provides novel insights into the understanding of type-specific roles of maternally-inherited molecules in fish. Here we show, for the first time, that transcripts and proteins have distinct, yet complementary, functions in the egg of teleost fish. Maternally-inherited mRNAs would shape embryo neurodevelopment, while maternally-inherited proteins would rather be responsible for protecting the embryo against pathogens. Additionally, we observed that processes directly preceding ovulation may considerably affect the reproductive success by modifying expression level of genes crucial for proper embryonic development, being novel fish egg quality markers (e.g., smarca4 or h3f3a). These results are of major importance for understanding the influence of external factors on reproductive fitness in both captive and wild-type fish species.


Asunto(s)
Desarrollo Embrionario , Reproducción , Animales , Desarrollo Embrionario/genética , Femenino , Sistema Inmunológico/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
10.
PLoS Genet ; 14(9): e1007593, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30199527

RESUMEN

Female gamete production relies on coordinated molecular and cellular processes that occur in the ovary throughout oogenesis. In fish, as in other vertebrates, these processes have been extensively studied both in terms of endocrine/paracrine regulation and protein expression and activity. The role of small non-coding RNAs in the regulation of animal reproduction remains however largely unknown and poorly investigated, despite a growing interest for the importance of miRNAs in a wide variety of biological processes. Here, we analyzed the role of miR-202, a miRNA predominantly expressed in male and female gonads in several vertebrate species. We studied its expression in the medaka ovary and generated a mutant line (using CRISPR/Cas9 genome editing) to determine its importance for reproductive success with special interest for egg production. Our results show that miR-202-5p is the most abundant mature form of the miRNA and that it is expressed in granulosa cells and in the unfertilized egg. The knock out (KO) of mir-202 gene resulted in a strong phenotype both in terms of number and quality of eggs produced. Mutant females exhibited either no egg production or produced a dramatically reduced number of eggs that could not be fertilized, ultimately leading to no reproductive success. We quantified the size distribution of the oocytes in the ovary of KO females and performed a large-scale transcriptomic analysis approach to identified dysregulated molecular pathways. Together, cellular and molecular analyses indicate that the lack of miR-202 impairs the early steps of oogenesis/folliculogenesis and decreases the number of large (i.e. vitellogenic) follicles, ultimately leading to dramatically reduced female fecundity. This study sheds new light on the regulatory mechanisms that control the early steps of follicular development, including possible targets of miR-202-5p, and provides the first in vivo functional evidence that a gonad-predominant microRNA may have a major role in female reproduction.


Asunto(s)
Fertilidad/genética , Regulación del Desarrollo de la Expresión Génica , MicroARNs/fisiología , Oogénesis/genética , Oryzias/fisiología , Animales , Animales Modificados Genéticamente , Sistemas CRISPR-Cas , Femenino , Edición Génica , Perfilación de la Expresión Génica , Técnicas de Inactivación de Genes , Células de la Granulosa , Masculino , Oocitos/crecimiento & desarrollo , Oocitos/metabolismo , Ovario/citología , Ovario/crecimiento & desarrollo , Ovario/metabolismo
11.
Mol Reprod Dev ; 87(9): 934-951, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32864792

RESUMEN

Pikeperch, Sander lucioperca, is a species of high interest to the aquaculture. The expansion of its production can only be achieved by furthering domestication level. However, the mechanisms driving the domestication process in finfishes are poorly understood. Transcriptome profiling of eggs was found to be a useful tool allowing understanding of the domestication process in teleosts. In this study, using next-generation sequencing, the first pikeperch transcriptome has been generated as well as pikeperch-specific microarray comprising 35,343 unique probes. Next, we performed transcriptome profiling of eggs obtained from wild and domesticated populations. We found 710 differentially expressed genes that were linked mostly to nervous system development. These results provide new insights into processes that are directly involved in the domestication of finfishes. It can be suggested that all the identified processes were predetermined by the maternally derived set of genes contained in the unfertilized eggs. This allows us to suggest that fish behavior, along with many other processes, can be predetermined at the cellular level and may have significant implications on the adaptation of cultured fish to the natural environment. This also allows to suggest that fish behavior should be considered as a very important pikeperch aquaculture selection trait.


Asunto(s)
Domesticación , Neurogénesis/genética , Óvulo/metabolismo , Percas , Animales , Acuicultura , Femenino , Regulación del Desarrollo de la Expresión Génica , Genes del Desarrollo/genética , Masculino , Óvulo/crecimiento & desarrollo , Percas/embriología , Percas/genética , Percas/crecimiento & desarrollo , Transcriptoma/genética
12.
BMC Genomics ; 18(1): 447, 2017 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-28592307

RESUMEN

BACKGROUND: Compensatory growth is a phase of rapid growth, greater than the growth rate of control animals, that occurs after a period of growth-stunting conditions. Fish show a capacity for compensatory growth after alleviation of dietary restriction, but the underlying cellular mechanisms are unknown. To learn more about the contribution of genes regulating hypertrophy (an increase in muscle fibre size) and hyperplasia (the generation of new muscle fibres) in the compensatory muscle growth response in fish, we used high-density microarray analysis to investigate the global gene expression in muscle of trout during a fasting-refeeding schedule and in muscle of control-fed trout displaying normal growth. RESULTS: The compensatory muscle growth signature, as defined by genes up-regulated in muscles of refed trout compared with control-fed trout, showed enrichment in functional categories related to protein biosynthesis and maturation, such as RNA processing, ribonucleoprotein complex biogenesis, ribosome biogenesis, translation and protein folding. This signature was also enriched in chromatin-remodelling factors of the protein arginine N-methyl transferase family. Unexpectedly, functional categories related to cell division and DNA replication were not inferred from the molecular signature of compensatory muscle growth, and this signature contained virtually none of the genes previously reported to be up-regulated in hyperplastic growth zones of the late trout embryo myotome and to potentially be involved in production of new myofibres, notably genes encoding myogenic regulatory factors, transmembrane receptors essential for myoblast fusion or myofibrillar proteins predominant in nascent myofibres. CONCLUSION: Genes promoting myofibre growth, but not myofibre formation, were up-regulated in muscles of refed trout compared with continually fed trout. This suggests that a compensatory muscle growth response, resulting from the stimulation of hypertrophy but not the stimulation of hyperplasia, occurs in trout after refeeding. The generation of a large set of genes up-regulated in muscle of refed trout may yield insights into the molecular and cellular mechanisms controlling skeletal muscle mass in teleost and serve as a useful list of potential molecular markers of muscle growth in fish.


Asunto(s)
Ayuno/metabolismo , Perfilación de la Expresión Génica , Hipertrofia/genética , Células Musculares/metabolismo , Células Musculares/patología , Regulación hacia Arriba , Animales , Desarrollo de Músculos/genética , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/crecimiento & desarrollo
13.
BMC Genomics ; 18(1): 347, 2017 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-28472935

RESUMEN

BACKGROUND: Excessive accumulation of adipose tissue in cultured fish is an outstanding problem in aquaculture. To understand the development of adiposity, it is crucial to identify the genes which expression is associated with adipogenic differentiation. Therefore, the transcriptomic profile at different time points (days 3, 8, 15 and 21) along primary culture development of rainbow trout preadipocytes has been investigated using an Agilent trout oligo microarray. RESULTS: Our analysis identified 4026 genes differentially expressed (fold-change >3) that were divided into two major clusters corresponding to the main phases observed during the preadipocyte culture: proliferation and differentiation. Proliferation cluster comprised 1028 genes up-regulated from days 3 to 8 of culture meanwhile the differentiation cluster was characterized by 2140 induced genes from days 15 to 21. Proliferation was characterized by enrichment in genes involved in basic cellular and metabolic processes (transcription, ribosome biogenesis, translation and protein folding), cellular remodelling and autophagy. In addition, the implication of the eicosanoid signalling pathway was highlighted during this phase. On the other hand, the terminal differentiation phase was enriched with genes involved in energy production, lipid and carbohydrate metabolism. Moreover, during this phase an enrichment in genes involved in the formation of the lipid droplets was evidenced as well as the activation of the thyroid-receptor/retinoic X receptor (TR/RXR) and the peroxisome proliferator activated receptors (PPARs) signalling pathways. The whole adipogenic process was driven by a coordinated activation of transcription factors and epigenetic modulators. CONCLUSIONS: Overall, our study demonstrates the coordinated expression of functionally related genes during proliferation and differentiation of rainbow trout adipocyte cells. Furthermore, the information generated will allow future investigations of specific genes involved in particular stages of fish adipogenesis.


Asunto(s)
Adipocitos/fisiología , Adipogénesis , Transcriptoma , Animales , Proliferación Celular , Células Cultivadas , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
J Exp Zool B Mol Dev Evol ; 328(7): 709-721, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28944589

RESUMEN

Whole-genome duplications (WGDs) are important evolutionary events. Our understanding of underlying mechanisms, including the evolution of duplicated genes after WGD, however, remains incomplete. Teleost fish experienced a common WGD (teleost-specific genome duplication, or TGD) followed by a dramatic adaptive radiation leading to more than half of all vertebrate species. The analysis of gene expression patterns following TGD at the genome level has been limited by the lack of suitable genomic resources. The recent concomitant release of the genome sequence of spotted gar (a representative of holosteans, the closest-related lineage of teleosts that lacks the TGD) and the tissue-specific gene expression repertoires of over 20 holostean and teleostean fish species, including spotted gar, zebrafish, and medaka (the PhyloFish project), offers a unique opportunity to study the evolution of gene expression following TGD in teleosts. We show that most TGD duplicates gained their current status (loss of one duplicate gene or retention of both duplicates) relatively rapidly after TGD (i.e., prior to the divergence of medaka and zebrafish lineages). The loss of one duplicate is the most common fate after TGD with a probability of approximately 80%. In addition, the fate of duplicate genes after TGD, including subfunctionalization, neofunctionalization, or retention of two "similar" copies occurred not only before but also after the divergence of species tested, in consistency with a role of the TGD in speciation and/or evolution of gene function. Finally, we report novel cases of TGD ohnolog subfunctionalization and neofunctionalization that further illustrate the importance of these processes.


Asunto(s)
Evolución Molecular , Peces/genética , Duplicación de Gen , Regulación de la Expresión Génica , Genoma , Animales , Especificidad de la Especie
15.
BMC Genomics ; 17(1): 810, 2016 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-27756225

RESUMEN

BACKGROUND: Muscle fibre hyperplasia stops in most fish when they reach approximately 50 % of their maximum body length. However, new small-diameter muscle fibres can be produced de novo in aged fish after muscle injury. Given that virtually nothing is known regarding the transcriptional mechanisms that regulate regenerative myogenesis in adult fish, we explored the temporal changes in gene expression during trout muscle regeneration following mechanical crushing. Then, we compared the gene transcription profiles of regenerating muscle with the previously reported gene expression signature associated with muscle fibre hyperplasia. RESULTS: Using an Agilent-based microarray platform we conducted a time-course analysis of transcript expression in 29 month-old trout muscle before injury (time 0) and at the site of injury 1, 8, 16 and 30 days after lesions were made. We identified more than 7000 unique differentially expressed transcripts that segregated into four major clusters with distinct temporal profiles and functional categories. Functional categories related to response to wounding, response to oxidative stress, inflammatory processes and angiogenesis were inferred from the early up-regulated genes, while functions related to cell proliferation, extracellular matrix remodelling, muscle development and myofibrillogenesis were inferred from genes up-regulated 30 days post-lesion, when new small myofibres were visible at the site of injury. Remarkably, a large set of genes previously reported to be up-regulated in hyperplastic muscle growth areas was also found to be overexpressed at 30 days post-lesion, indicating that many features of the transcriptional program underlying muscle hyperplasia are reactivated when new myofibres are transiently produced during fish muscle regeneration. CONCLUSION: The results of the present study demonstrate a coordinated expression of functionally related genes during muscle regeneration in fish. Furthermore, this study generated a useful list of novel genes associated with muscle regeneration that will allow further investigations on the genes, pathways or biological processes involved in muscle growth and regeneration in vertebrates.


Asunto(s)
Perfilación de la Expresión Génica , Desarrollo de Músculos/genética , Oncorhynchus mykiss/fisiología , Regeneración/genética , Transcriptoma , Animales , Análisis por Conglomerados , Regulación de la Expresión Génica , Hiperplasia , Músculo Esquelético/lesiones , Músculo Esquelético/metabolismo , Factores de Tiempo
16.
BMC Genomics ; 17: 449, 2016 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-27296167

RESUMEN

BACKGROUND: The achievement of sustainable feeding practices in aquaculture by reducing the reliance on wild-captured fish, via replacement of fish-based feed with plant-based feed, is impeded by the poor growth response seen in fish fed high levels of plant ingredients. Our recent strategy to nutritionally program rainbow trout by early short-term exposure to a plant-based (V) diet versus a control fish-based (M) diet at the first-feeding fry stage when the trout fry start to consume exogenous feed, resulted in remarkable improvements in feed intake, growth and feed utilization when the same fish were challenged with the diet V (V-challenge) at the juvenile stage, several months following initial exposure. We employed microarray expression analysis at the first-feeding and juvenile stages to deduce the mechanisms associated with the nutritional programming of plant-based feed acceptance in trout. RESULTS: Transcriptomic analysis was performed on rainbow trout whole fry after 3 weeks exposure to either diet V or diet M at the first feeding stage (3-week), and in the whole brain and liver of juvenile trout after a 25 day V-challenge, using a rainbow trout custom oligonucleotide microarray. Overall, 1787 (3-week + Brain) and 924 (3-week + Liver) mRNA probes were affected by the early-feeding exposure. Gene ontology and pathway analysis of the corresponding genes revealed that nutritional programming affects pathways of sensory perception, synaptic transmission, cognitive processes and neuroendocrine peptides in the brain; whereas in the liver, pathways mediating intermediary metabolism, xenobiotic metabolism, proteolysis, and cytoskeletal regulation of cell cycle are affected. These results suggest that the nutritionally programmed enhanced acceptance of a plant-based feed in rainbow trout is driven by probable acquisition of flavour and feed preferences, and reduced sensitivity to changes in hepatic metabolic and stress pathways. CONCLUSIONS: This study outlines the molecular mechanisms in trout brain and liver that accompany the nutritional programming of plant-based diet acceptance in trout, reinforces the notion of the first-feeding stage in oviparous fish as a critical window for nutritional programming, and provides support for utilizing this strategy to achieve improvements in sustainability of feeding practices in aquaculture.


Asunto(s)
Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales/genética , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Oncorhynchus mykiss/fisiología , Animales , Biología Computacional/métodos , Perfilación de la Expresión Génica , Ontología de Genes , Estudios de Asociación Genética , Especificidad de Órganos/genética , Reproducibilidad de los Resultados , Transcriptoma
17.
Mol Reprod Dev ; 82(5): 397-404, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25908546

RESUMEN

Fish in use in aquaculture display large variation in gamete biology. To reach better understanding around this issue, this study aims at identifying if species specific "egg life history traits" can be hidden in the unfertilized egg. This was done by investigating egg transcriptome differences between Atlantic salmon and Atlantic cod. Salmon and cod eggs were selected due to their largely differencing phenotypes. An oligo microarray analysis was performed on ovulated eggs from cod (n = 8) and salmon (n = 7). The arrays were normalized to a similar spectrum for both arrays. Both arrays were re-annotated with SWISS-Prot and KEGG genes to retrieve an official gene symbol and an orthologous KEGG annotation, in salmon and cod arrays this represented 14,009 and 7,437 genes respectively. The probe linked to the highest gene expression for that particular KEGG annotation was used to compare expression between species. Differential expression was calculated for genes that had an annotation with score >300, resulting in a total of 2,457 KEGG annotations (genes) being differently expressed between the species (FD > 2). This analysis revealed that immune, signal transduction and excretory related pathways were overrepresented in salmon compared to cod. The most overrepresented pathways in cod were related to regulation of genetic information processing and metabolism. To conclude this analysis clearly point at some distinct transcriptome repertoires for cod and salmon and that these differences may explain some of the species-specific biological features for salmon and cod eggs.


Asunto(s)
Proteínas de Peces/genética , Gadus morhua/genética , Óvulo/metabolismo , Salmo salar/genética , Transcriptoma , Animales , Femenino , Perfilación de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos , Oocitos/metabolismo , Óvulo/química , Especificidad de la Especie
18.
Sci Rep ; 14(1): 9651, 2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671194

RESUMEN

In contrast to most fishes, salmonids exhibit the unique ability to hold their eggs for several days after ovulation without significant loss of viability. During this period, eggs are held in the body cavity in a biological fluid, the coelomic fluid (CF) that is responsible for preserving egg viability. To identify CF proteins responsible for preserving egg viability, a proteomic comparison was performed using 3 salmonid species and 3 non-salmonid species to identify salmonid-specific highly abundant proteins. In parallel, rainbow trout CF fractions were purified and used in a biological test to estimate their egg viability preservation potential. The most biologically active CF fractions were then subjected to mass spectrometry analysis. We identified 50 proteins overabundant in salmonids and present in analytical fractions with high egg viability preservation potential. The identity of these proteins illuminates the biological processes participating in egg viability preservation. Among identified proteins of interest, the ovarian-specific expression and abundance in CF at ovulation of N-acetylneuraminic acid synthase a (Nansa) suggest a previously unsuspected role. We show that salmonid CF is a complex biological fluid containing a diversity of proteins related to immunity, calcium binding, lipid metabolism, proteolysis, extracellular matrix and sialic acid metabolic pathway that are collectively responsible for preserving egg viability.


Asunto(s)
Ovario , Salmonidae , Animales , Femenino , Ovario/metabolismo , Salmonidae/metabolismo , Óvulo/metabolismo , Proteínas de Peces/metabolismo , Proteómica/métodos , Líquidos Corporales/metabolismo , Oncorhynchus mykiss/metabolismo
19.
BMC Genomics ; 14: 173, 2013 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-23497127

RESUMEN

BACKGROUND: A unique feature of fish is that new muscle fibres continue to be produced throughout much of the life cycle; a process termed muscle hyperplasia. In trout, this process begins in the late embryo stage and occurs in both a discrete, continuous layer at the surface of the primary myotome (stratified hyperplasia) and between existing muscle fibres throughout the myotome (mosaic hyperplasia). In post-larval stages, muscle hyperplasia is only of the mosaic type and persists until 40% of the maximum body length is reached. To characterise the genetic basis of myotube neoformation in trout, we combined laser capture microdissection and microarray analysis to compare the transcriptome of hyperplastic regions of the late embryo myotome with that of adult myotomal muscle, which displays only limited hyperplasia. RESULTS: Gene expression was analysed using Agilent trout oligo microarrays. Our analysis identified more than 6800 transcripts that were significantly up-regulated in the superficial hyperplastic zones of the late embryonic myotome compared to adult myotomal muscle. In addition to Pax3, Pax7 and the fundamental myogenic basic helix-loop-helix regulators, we identified a large set of up-regulated transcriptional factors, including Myc paralogs, members of Hes family and many homeobox-containing transcriptional regulators. Other cell-autonomous regulators overexpressed in hyperplastic zones included a large set of cell surface proteins belonging to the Ig superfamily. Among the secreted molecules found to be overexpressed in hyperplastic areas, we noted growth factors as well as signalling molecules. A novel finding in our study is that many genes that regulate planar cell polarity (PCP) were overexpressed in superficial hyperplastic zones, suggesting that the PCP pathway is involved in the oriented elongation of the neofibres. CONCLUSION: The results obtained in this study provide a valuable resource for further analysis of novel genes potentially involved in hyperplastic muscle growth in fish. Ultimately, this study could yield insights into particular genes, pathways or cellular processes that may stimulate muscle regeneration in other vertebrates.


Asunto(s)
Desarrollo Embrionario/genética , Hiperplasia/genética , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Trucha , Animales , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Humanos , Hiperplasia/patología , Captura por Microdisección con Láser , Músculo Esquelético/citología , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/metabolismo , Trucha/genética , Trucha/crecimiento & desarrollo
20.
BMC Genomics ; 14: 911, 2013 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-24365073

RESUMEN

BACKGROUND: Propionibacterium freudenreichii is a food grade bacterium consumed both in cheeses and in probiotic preparations. Its promising probiotic potential, relying largely on the active release of beneficial metabolites within the gut as well as the expression of key surface proteins involved in immunomodulation, deserves to be explored more deeply. Adaptation to the colon environment is requisite for the active release of propionibacterial beneficial metabolites and constitutes a bottleneck for metabolic activity in vivo. Mechanisms allowing P. freudenreichii to adapt to digestive stresses have been only studied in vitro so far. Our aim was therefore to study P. freudenreichii metabolic adaptation to intra-colonic conditions in situ. RESULTS: We maintained a pure culture of the type strain P. freudenreichii CIRM BIA 1, contained in a dialysis bag, within the colon of vigilant piglets during 24 hours. A transcriptomic analysis compared gene expression to identify the metabolic pathways induced by this environment, versus control cultures maintained in spent culture medium.We observed drastic changes in the catabolism of sugars and amino-acids. Glycolysis, the Wood-Werkman cycle and the oxidative phosphorylation pathways were down-regulated but induction of specific carbohydrate catabolisms and alternative pathways were induced to produce NADH, NADPH, ATP and precursors (utilizing of propanediol, gluconate, lactate, purine and pyrimidine and amino-acids). Genes involved in stress response were down-regulated and genes specifically expressed during cell division were induced, suggesting that P. freudenreichii adapted its metabolism to the conditions encountered in the colon. CONCLUSIONS: This study constitutes the first molecular demonstration of P. freudenreichii activity and physiological adaptation in vivo within the colon. Our data are likely specific to our pig microbiota composition but opens an avenue towards understanding probiotic action within the gut in further studies comparing bacterial adaptation to different microbiota.


Asunto(s)
Adaptación Fisiológica , Colon/microbiología , Probióticos , Propionibacterium/metabolismo , Transcriptoma , Animales , Regulación Bacteriana de la Expresión Génica , Redes y Vías Metabólicas , Propionibacterium/genética , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA