Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Horm Behav ; 151: 105340, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36933440

RESUMEN

Organismal behavior, with its tremendous complexity and diversity, is generated by numerous physiological systems acting in coordination. Understanding how these systems evolve to support differences in behavior within and among species is a longstanding goal in biology that has captured the imagination of researchers who work on a multitude of taxa, including humans. Of particular importance are the physiological determinants of behavioral evolution, which are sometimes overlooked because we lack a robust conceptual framework to study mechanisms underlying adaptation and diversification of behavior. Here, we discuss a framework for such an analysis that applies a "systems view" to our understanding of behavioral control. This approach involves linking separate models that consider behavior and physiology as their own networks into a singular vertically integrated behavioral control system. In doing so, hormones commonly stand out as the links, or edges, among nodes within this system. To ground our discussion, we focus on studies of manakins (Pipridae), a family of Neotropical birds. These species have numerous physiological and endocrine specializations that support their elaborate reproductive displays. As a result, manakins provide a useful example to help imagine and visualize the way systems concepts can inform our appreciation of behavioral evolution. In particular, manakins help clarify how connectedness among physiological systems-which is maintained through endocrine signaling-potentiate and/or constrain the evolution of complex behavior to yield behavioral differences across taxa. Ultimately, we hope this review will continue to stimulate thought, discussion, and the emergence of research focused on integrated phenotypes in behavioral ecology and endocrinology.


Asunto(s)
Passeriformes , Biología de Sistemas , Humanos , Animales , Sistema Endocrino , Passeriformes/fisiología , Hormonas , Adaptación Fisiológica
2.
Evolution ; 76(7): 1469-1480, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35665503

RESUMEN

Multicomponent signals are found throughout the animal kingdom, but how these elaborate displays evolve and diversify is still unclear. Here, we explore the evolution of the woodpecker drum display. Two components of this territorial sexually selected signal, drum speed and drum length, are used by territory holders to assess the threat level of an intruding drummer. We explore the coevolution of these display components both among and within species. Among species, we find evidence for strong coevolution of drum speed and length. Within species, we find that drum speed and length vary largely independent of each other. However, in some species, there is evidence of covariation in certain portions of the drum length distribution. The observed differences in component covariation at the macro- and microevolutionary scales highlight the importance of studying signal structure both among and within species. In all cases of covariation at both evolutionary scales, the relationship between drum speed and length is positive, indicating mutual elaboration of display components and not a performance trade-off.


Asunto(s)
Acústica , Aves , Animales , Evolución Biológica
3.
Behav Brain Res ; 262: 68-73, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24445074

RESUMEN

In ovariectomized rats, administration of estradiol, or selective estrogen receptor agonists that activate either the α or ß isoforms, have been shown to enhance spatial cognition on a variety of learning and memory tasks, including those that capitalize on the preference of rats to seek out novelty. Although the effects of the putative estrogen G-protein-coupled receptor 30 (GPR30) on hippocampus-based tasks have been reported using food-motivated tasks, the effects of activation of GPR30 receptors on tasks that depend on the preference of rats to seek out spatial novelty remain to be determined. Therefore, the aim of the current study was to determine if short-term treatment of ovariectomized rats with G-1, an agonist for GPR30, would mimic the effects on spatial recognition memory observed following short-term estradiol treatment. In Experiment 1, ovariectomized rats treated with a low dose (1 µg) of estradiol 48 h and 24 h prior to the information trial of a Y-maze task exhibited a preference for the arm associated with the novel environment on the retention trial conducted 48 h later. In Experiment 2, treatment of ovariectomized rats with G-1 (25 µg) 48 h and 24 h prior to the information trial of a Y-maze task resulted in a greater preference for the arm associated with the novel environment on the retention trial. Collectively, the results indicated that short-term treatment of ovariectomized rats with a GPR30 agonist was sufficient to enhance spatial recognition memory, an effect that also occurred following short-term treatment with a low dose of estradiol.


Asunto(s)
Memoria/fisiología , Reconocimiento Visual de Modelos/fisiología , Receptores Acoplados a Proteínas G/agonistas , Percepción Espacial/fisiología , Animales , Ciclopentanos/farmacología , Estradiol/farmacología , Femenino , Memoria/efectos de los fármacos , Ovariectomía , Reconocimiento Visual de Modelos/efectos de los fármacos , Quinolinas/farmacología , Ratas , Ratas Long-Evans , Percepción Espacial/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA