Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 490(7419): 278-82, 2012 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-22972191

RESUMEN

Deafness is a condition with a high prevalence worldwide, produced primarily by the loss of the sensory hair cells and their associated spiral ganglion neurons (SGNs). Of all the forms of deafness, auditory neuropathy is of particular concern. This condition, defined primarily by damage to the SGNs with relative preservation of the hair cells, is responsible for a substantial proportion of patients with hearing impairment. Although the loss of hair cells can be circumvented partially by a cochlear implant, no routine treatment is available for sensory neuron loss, as poor innervation limits the prospective performance of an implant. Using stem cells to recover the damaged sensory circuitry is a potential therapeutic strategy. Here we present a protocol to induce differentiation from human embryonic stem cells (hESCs) using signals involved in the initial specification of the otic placode. We obtained two types of otic progenitors able to differentiate in vitro into hair-cell-like cells and auditory neurons that display expected electrophysiological properties. Moreover, when transplanted into an auditory neuropathy model, otic neuroprogenitors engraft, differentiate and significantly improve auditory-evoked response thresholds. These results should stimulate further research into the development of a cell-based therapy for deafness.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias/citología , Potenciales Evocados Auditivos , Células Madre/citología , Animales , Umbral Auditivo , Línea Celular , Células Cultivadas , Nervio Coclear/citología , Nervio Coclear/fisiología , Sordera/inducido químicamente , Sordera/terapia , Factor 10 de Crecimiento de Fibroblastos/genética , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Factor 3 de Crecimiento de Fibroblastos/genética , Factor 3 de Crecimiento de Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Gerbillinae , Células Ciliadas Auditivas/citología , Células Ciliadas Auditivas/fisiología , Humanos , Ratones , Técnicas de Placa-Clamp , Trasplante de Células Madre
2.
Mol Reprod Dev ; 83(4): 312-23, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27077675

RESUMEN

Human male germ-line stem cells (hmGSCs) and human testis-derived embryonic stem cell-like (htESC-like) cells are claimed to be in vitro pluripotent counterparts of spermatogonial stem cells (SSCs), but the origin and pluripotency of human testis-derived cell cultures are still under debate. The aim of this study was to generate putative pluripotent stem cells in vitro from human testicular sperm-extracted (TESE) samples of infertile men, and to assess their pluripotency and capacity to differentiate. TESE samples were minced, enzymatically disaggregated and dispersed into single-cell or cluster suspensions, and then cultured. Initially, cell clusters resembled those described for hmGSCs and htESC-like cells, and were positive for markers such as OCT4/POU5F1, NANOG, and TRA-2-54. Prolonged propagation of cell clusters expressing pluripotency markers did not thrive; instead, the cells that emerged possessed characteristics of mesenchymal stromal cells (MSCs) such as STRO-1, CD105/EGLN1, CD13/ANPEP, SOX9, vimentin, and fibronectin. KIT, SOX2, and CD44 were not expressed by these MSCs. The multipotential differentiation capacity of these cells was confirmed using Oil Red-O and Alizarin Red staining after induction with specific culture conditions. It is therefore concluded that pluripotent stem cells could not be derived using the conditions previously reported to be successful for TESE samples.


Asunto(s)
Células Madre Pluripotentes/citología , Espermatogénesis , Espermatogonias/citología , Testículo/citología , Técnicas de Cultivo de Célula , Diferenciación Celular , Perfilación de la Expresión Génica , Humanos , Infertilidad Masculina , Masculino , Recuperación de la Esperma , Espermatogénesis/genética , Células del Estroma/citología
3.
Hum Reprod ; 28(1): 22-32, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23108349

RESUMEN

STUDY QUESTION: Are there any links between the length measurements of sperm components (head, midpiece, flagellum, total sperm length and the flagellum:head ratio) and data obtained during semen analysis? SUMMARY ANSWER: Both the mean measurement and the variation in the lengths of sperm components are related to characteristics of semen. WHAT IS KNOWN ALREADY: Studies in non-human species have shown that sperm morphology (size and shape) is associated with testes productivity and the consistency of sperm manufacture. However, no study to date has investigated whether there are relationships between the size and consistency of human sperm components, and measures of semen characteristics, including sperm numbers and how well they swim. STUDY DESIGN, SIZE AND DURATION: A retrospective laboratory study of the semen provided by 103 randomly selected men from a 500-man cohort who enrolled into the study between April and December 2006. PARTICIPANTS AND SETTING: Men attending Sheffield Teaching Hospital NHS Foundation Trust for semen analysis as part of investigations for infertility and whose ejaculates were found to contain sperm. MAIN RESULTS AND THE ROLE OF CHANCE: The mean flagellum length and the mean total sperm length were positively associated with semen characteristics measured manually, but were not associated with the sperm swimming speed measured by computer-aided sperm analysis. Ejaculates with a lower variation in the length of sperm components contained sperm that were more likely to be motile. The mean sperm length components accounted for up to 9% of the variance in semen characteristics, while the coefficient of variation accounted for up to 21%. LIMITATIONS AND REASONS FOR CAUTION: The sperm examined were obtained from men undergoing fertility investigations and so these results may not reflect men in the general population. WIDER IMPLICATIONS OF THE FINDINGS: Sperm length measurements may provide a useful insight into testis function and the efficiency of spermatogenesis. STUDY FUNDING AND COMPETING INTERESTS: This study was supported by funding from the University of Sheffield. The authors declare no conflicts of interest.


Asunto(s)
Análisis de Semen , Espermatozoides/citología , Espermatozoides/fisiología , Adulto , Tamaño de la Célula , Estudios de Cohortes , Hospitales de Enseñanza , Humanos , Procesamiento de Imagen Asistido por Computador , Modelos Lineales , Masculino , Microscopía por Video , Modelos Biológicos , Reproducibilidad de los Resultados , Estudios Retrospectivos , Recuento de Espermatozoides , Motilidad Espermática , Cola del Espermatozoide/fisiología , Reino Unido
4.
Stem Cells ; 30(6): 1134-43, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22367629

RESUMEN

Human mesenchymal stem cells (hMSCs) have been shown to have potential in regenerative approaches in bone and blood. Most protocols rely on their in vitro expansion prior to clinical use. However, several groups including our own have shown that hMSCs lose proliferation and differentiation ability with serial passage in culture, limiting their clinical applications. Cellular prion protein (PrP) has been shown to enhance proliferation and promote self-renewal of hematopoietic, mammary gland, and neural stem cells. Here we show, for the first time, that expression of PrP decreased in hMSC following ex vivo expansion. When PrP expression was knocked down, hMSC showed significant reduction in proliferation and differentiation. In contrast, hMSC expanded in the presence of small molecule 3/689, a modulator of PrP expression, showed retention of PrP expression with ex vivo expansion and extended lifespan up to 10 population doublings. Moreover, cultures produced a 300-fold increase in the number of cells generated. These cells showed a 10-fold increase in engraftment levels in bone marrow 5 weeks post-transplant. hMSC treated with 3/689 showed enhanced protection from DNA damage and enhanced cell cycle progression, in line with data obtained by gene expression profiling. Moreover, upregulation of superoxide dismutase-2 (SOD2) was also observed in hMSC expanded in the presence of 3/689. The increase in SOD2 was dependent on PrP expression and suggests increased scavenging of reactive oxygen species as mechanism of action. These data point to PrP as a good target for chemical intervention in stem cell regenerative medicine.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/citología , Priones/biosíntesis , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Diferenciación Celular/fisiología , Procesos de Crecimiento Celular/fisiología , Células Cultivadas , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Lentivirus/genética , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/fisiología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Fosforilación , Priones/genética , Transfección
5.
Hum Reprod ; 27(3): 641-51, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22215629

RESUMEN

BACKGROUND: Sperm motility is regulated by mitochondrial enzymes that are partially encoded by mitochondrial DNA (mtDNA). MtDNA has therefore been suggested as a putative genetic marker of male fertility. However, recent studies in different populations have identified both significant and non-significant associations between mtDNA variation and sperm motility. Here, we tested whether mtDNA variation was associated with sperm motility in a large cohort of men from the UK, to test the robustness of previous studies and the reliability of mtDNA as a marker of poor sperm motility. METHODS: A total of 463 men attending for semen analysis as part of infertility investigations were recruited from a UK laboratory. Sperm motility was measured using both computer-assisted sperm analysis and traditional manual measurements. MtDNA haplogroup and haplotype were determined in 357 and 298 men, respectively, using single nucleotide polymorphism (SNP) markers throughout the mtDNA genome, and compared with sperm motility data. The linkage between the SNP markers, and possible associations between individual SNPs and motility, were also investigated. RESULTS: We found no statistical association between haplogroup or haplotype and sperm motility, regardless of how it was measured (P > 0.05 in all cases). Moreover, individual SNPs which were in linkage disequilibrium and dispersed across the mitochondrial genome, and therefore sensitive to mtDNA variation, were not predictive of sperm motility. CONCLUSIONS: Mitochondrial haplotype is unlikely to be a reliable genetic marker of male factor infertility.


Asunto(s)
ADN Mitocondrial/química , Haplotipos , Motilidad Espermática/genética , Adulto , Estudios de Cohortes , Marcadores Genéticos , Variación Genética , Humanos , Desequilibrio de Ligamiento , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Análisis de Componente Principal , Reino Unido
6.
J Immunol ; 182(11): 6879-88, 2009 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-19454684

RESUMEN

Human embryonic stem cells (hESC) are pluripotent stem cells. A major challenge in the field of hESC is the establishment of specific differentiation protocols that drives hESC down a particular lineage fate. So far, attempts to generate T cells from hESC in vitro were unsuccessful. In this study, we show that T cells can be generated in vitro from hESC-derived hematopoietic precursor cells present in hematopoietic zones (HZs). These zones are morphologically similar to blood islands during embryonic development, and are formed when hESC are cultured on OP9 stromal cells. Upon subsequent transfer of these HZs on OP9 cells expressing high levels of Delta-like 1 and in the presence of growth factors, cells expand and differentiate to T cells. Furthermore, we show that T cells derive exclusively from a CD34(high)CD43(low) population, further substantiating the notion that hESC-derived CD34(high)CD43(low) cells are formed in HZs and are the only population containing multipotent hematopoietic precursor cells. Differentiation to T cells sequentially passes through the physiological intermediates: CD34(+)CD7(+) T/NK committed, CD7(+)CD4(+)CD8(-) immature single positive, CD4(+)CD8(+) double positive, and finally CD3(+)CD1(-)CD27(+) mature T cell stages. TCRalphabeta(+) and TCRgammadelta(+) T cells are generated. Mature T cells are polyclonal, proliferate, and secrete cytokines in response to mitogens. This protocol for the de novo generation of T cells from hESC could be clinically and scientifically relevant.


Asunto(s)
Células Madre Embrionarias/citología , Hematopoyesis , Células Madre Hematopoyéticas/citología , Linfocitos T/citología , Antígenos CD/análisis , Técnicas de Cultivo de Célula , Diferenciación Celular , Linaje de la Célula , Proliferación Celular , Técnicas de Cocultivo , Humanos , Células del Estroma
7.
Cryobiology ; 63(3): 298-305, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22027383

RESUMEN

Human embryonic stem cells (hESCs) can be maintained as undifferentiated cells in vitro and induced to differentiate into a variety of somatic cell types. Thus, hESCs provide a source of differentiated cell types that could be used to replace diseased cells of a tissue. The efficient cryopreservation of hESCs is important for establishing effective stem cell banks, however, conventional slow freezing methods usually lead to low rates of recovery after thawing cells and their replating in culture. We have established a method for recovering cryopreserved hESCs using pinacidil and compared it to a method that employs the ROCK inhibitor Y-27632. We show that pinacidil is similar to Y-27632 in promoting survival of hESCs after cryopreservation. The cells exhibited normal hESC morphology, retained a normal karyotype, and expressed characteristic hESC markers (OCT4, SSEA3, SSEA4 and TRA-1-60). Moreover, the cells retained the capacity to differentiate into derivatives of all three embryonic germ layers as demonstrated by differentiation through embryoid body formation. Pinacidil has been used for many years as a vasodilator drug to treat hypertension and its manufacture and traceability are well defined. It is also considerably cheaper than Y-27632. Thus, the use of pinacidil offers an efficient method for recovery of cryopreserved dissociated human ES cells.


Asunto(s)
Antihipertensivos/farmacología , Criopreservación/métodos , Cuerpos Embrioides/citología , Células Madre Embrionarias/citología , Pinacidilo/farmacología , Amidas/farmacología , Antígenos de Superficie/genética , Antígenos de Superficie/metabolismo , Antígenos de Carbohidratos Asociados a Tumores/genética , Antígenos de Carbohidratos Asociados a Tumores/metabolismo , Biomarcadores/análisis , Diferenciación Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Cuerpos Embrioides/efectos de los fármacos , Cuerpos Embrioides/metabolismo , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Citometría de Flujo , Congelación , Expresión Génica , Humanos , Cariotipificación , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Proteoglicanos/genética , Proteoglicanos/metabolismo , Piridinas/farmacología , Antígenos Embrionarios Específico de Estadio/genética , Antígenos Embrionarios Específico de Estadio/metabolismo
8.
Proc Natl Acad Sci U S A ; 105(36): 13409-14, 2008 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-18725626

RESUMEN

A major limitation in developing applications for the use of human embryonic stem cells (HESCs) is our lack of knowledge of their responses to specific cues that control self-renewal, differentiation, and lineage selection. HESCs are most commonly maintained on inactivated mouse embryonic fibroblast feeders in medium supplemented with FCS, or proprietary replacements such as knockout serum-replacement together with FGF-2. These undefined culture conditions hamper analysis of the mechanisms that control HESC behavior. We have now developed a defined serum-free medium, hESF9, for the culture of HESCs on a type I-collagen substrate without feeders. In contrast to other reported media for the culture of HESCs, this medium has a lower osmolarity (292 mosmol/liter), l-ascorbic acid-2-phosphate (0.1 microg/ml), and heparin. Insulin, transferrin, albumin conjugated with oleic acid, and FGF-2 (10 ng/ml) were the only protein components. Further, we found that HESCs would proliferate in the absence of exogenous FGF-2 if heparin was also present. However, their growth was enhanced by the addition of FGF-2 up to 10 ng/ml although higher concentrations were deleterious in the presence of heparin.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Heparina/farmacología , Línea Celular , Proliferación Celular , Medio de Cultivo Libre de Suero , Factores de Crecimiento de Fibroblastos/farmacología , Humanos , Transducción de Señal
9.
Stem Cells ; 27(4): 776-82, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19350677

RESUMEN

Manipulation of gene function in embryonic stem cells by either over expression or downregulation is critical for understanding their subsequent cell fate. We have developed a tetracycline-inducible short hairpin RNA interference (shRNAi) for human embryonic stem cells (hESCs) and demonstrated doxycycline dose-dependent knockdown of the transcription factor OCT4 and the cell surface antigen beta2-microglobulin. The induced knockdown of OCT4 resulted in rapid differentiation of hESCs with a significant increase in transcription of genes associated with trophoblast and endoderm lineages, the extent of which was controlled by the degree of induction. Transgene toxicity, which may occur in conditional over-expression strategies with hESCs, was not observed with wild-type Tet repressor protein. The system allows efficient, reversible, and long-term downregulation of target genes in hESCs and enables the generation of stable transfectants for the knockdown of genes essential for cell survival and self-renewal, not necessarily possible by nonconditional shRNAi methods. STEM CELLS 2009;27:776-782.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Embrionarias/fisiología , Técnicas de Silenciamiento del Gen/métodos , Factor 3 de Transcripción de Unión a Octámeros/genética , Interferencia de ARN/fisiología , Diferenciación Celular , Línea Celular , Linaje de la Célula/genética , Citometría de Flujo , Humanos , Immunoblotting , Inmunohistoquímica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcripción Genética , Transfección
10.
Stem Cells ; 27(5): 1196-204, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19418454

RESUMEN

In the quest to develop the tools necessary for a cell-based therapy for deafness, a critical step is to identify a suitable stem cell population. Moreover, the lack of a self-renovating model system for the study of cell fate determination in the human cochlea has impaired our understanding of the molecular events involved in normal human auditory development. We describe here the identification and isolation of a population of SOX2+OCT4+ human auditory stem cells from 9-week-old to 11-week-old fetal cochleae (hFASCs). These cells underwent long-term expansion in vitro and retained their capacity to differentiate into sensory hair cells and neurons, whose functional and electrophysiological properties closely resembled their in vivo counterparts during development. hFASCs, and the differentiating protocols defined here, could be used to study developing human cochlear neurons and hair cells, as models for drug screening and toxicity and may facilitate the development of cell-based therapies for deafness.


Asunto(s)
Diferenciación Celular , Células Madre Fetales/citología , Células Ciliadas Auditivas/citología , Neuronas/citología , Proliferación Celular , Separación Celular , Células Madre Fetales/metabolismo , Células Ciliadas Auditivas/metabolismo , Humanos , Potenciales de la Membrana , Neuronas/metabolismo
11.
Nat Biotechnol ; 25(2): 207-15, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17287758

RESUMEN

The application of human embryonic stem cells (HESCs) to provide differentiated cells for regenerative medicine will require the continuous maintenance of the undifferentiated stem cells for long periods in culture. However, chromosomal stability during extended passaging cannot be guaranteed, as recent cytogenetic studies of HESCs have shown karyotypic aberrations. The observed karyotypic aberrations probably reflect the progressive adaptation of self-renewing cells to their culture conditions. Genetic change that increases the capacity of cells to proliferate has obvious parallels with malignant transformation, and we propose that the changes observed in HESCs in culture reflect tumorigenic events that occur in vivo, particularly in testicular germ cell tumors. Further supporting a link between culture adaptation and malignancy, we have observed the formation of a chromosomal homogeneous staining region in one HESC line, a genetic feature almost a hallmark of cancer cells. Identifying the genes critical for culture adaptation may thus reveal key players for both stem cell maintenance in vitro and germ cell tumorigenesis in vivo.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Aberraciones Cromosómicas , Células Madre Embrionarias/patología , Células Madre Embrionarias/fisiología , Adaptación Fisiológica/genética , Diferenciación Celular/genética , Humanos , Modelos Genéticos
12.
Nat Biotechnol ; 25(7): 803-16, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17572666

RESUMEN

The International Stem Cell Initiative characterized 59 human embryonic stem cell lines from 17 laboratories worldwide. Despite diverse genotypes and different techniques used for derivation and maintenance, all lines exhibited similar expression patterns for several markers of human embryonic stem cells. They expressed the glycolipid antigens SSEA3 and SSEA4, the keratan sulfate antigens TRA-1-60, TRA-1-81, GCTM2 and GCT343, and the protein antigens CD9, Thy1 (also known as CD90), tissue-nonspecific alkaline phosphatase and class 1 HLA, as well as the strongly developmentally regulated genes NANOG, POU5F1 (formerly known as OCT4), TDGF1, DNMT3B, GABRB3 and GDF3. Nevertheless, the lines were not identical: differences in expression of several lineage markers were evident, and several imprinted genes showed generally similar allele-specific expression patterns, but some gene-dependent variation was observed. Also, some female lines expressed readily detectable levels of XIST whereas others did not. No significant contamination of the lines with mycoplasma, bacteria or cytopathic viruses was detected.


Asunto(s)
Células Madre Embrionarias/citología , Regulación del Desarrollo de la Expresión Génica , Fosfatasa Alcalina/metabolismo , Antígenos CD/biosíntesis , Biotecnología/métodos , Diferenciación Celular , Linaje de la Célula , Membrana Celular/metabolismo , Células Cultivadas , Análisis por Conglomerados , Femenino , Perfilación de la Expresión Génica , Genotipo , Glucolípidos/química , Humanos , Glicoproteínas de Membrana/biosíntesis , Tetraspanina 29
13.
Stem Cell Reports ; 15(3): 557-565, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32857978

RESUMEN

The enteric nervous system (ENS) is derived primarily from the vagal neural crest, a migratory multipotent cell population emerging from the dorsal neural tube between somites 1 and 7. Defects in the development and function of the ENS cause a range of enteric neuropathies, including Hirschsprung disease. Little is known about the signals that specify early ENS progenitors, limiting progress in the generation of enteric neurons from human pluripotent stem cells (hPSCs) to provide tools for disease modeling and regenerative medicine for enteric neuropathies. We describe the efficient and accelerated generation of ENS progenitors from hPSCs, revealing that retinoic acid is critical for the acquisition of vagal axial identity and early ENS progenitor specification. These ENS progenitors generate enteric neurons in vitro and, following in vivo transplantation, achieved long-term colonization of the ENS in adult mice. Thus, hPSC-derived ENS progenitors may provide the basis for cell therapy for defects in the ENS.


Asunto(s)
Sistema Nervioso Entérico/citología , Cresta Neural/citología , Células-Madre Neurales/citología , Tretinoina/farmacología , Animales , Línea Celular , Humanos , Ratones , Células-Madre Neurales/efectos de los fármacos , Neuronas/citología , Neuronas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Nervio Vago/citología
14.
Andrology ; 8(6): 1805-1814, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32649041

RESUMEN

BACKGROUND: Few potentially modifiable risk factors of male infertility have been identified, and while different diets and food groups have been associated with male infertility, evidence linking dietary factors including phytoestrogens and semen quality is limited and contradictory. OBJECTIVES: To study the associations between phytoestrogen intake and other dietary factors and semen quality. MATERIALS AND METHODS: A case-referent study was undertaken of the male partners, of couples attempting conception with unprotected intercourse for 12 months or more without success, recruited from 14 UK assisted reproduction clinics. A total of 1907 participants completed occupational, lifestyle and dietary questionnaires before semen quality (concentration, motility and morphology) were assessed. Food intake was estimated by a 65-item food frequency questionnaire (FFQ) covering the 12 months prior to recruitment. Analyses of dietary risk factors for low motile sperm concentration (MSC: <4.8 × 106 /mL) and poor sperm morphology (PM: <4% normal morphology) used unconditional logistic regression, accounting for clustering of subjects within the clinics, first without, and then with, adjustment for confounders associated with that outcome. RESULTS: High consumption of daidzein (≥13.74 µg/d), a phytoestrogen found in soy products, was a protective factor for MSC with an odds ratio (95%CI) of 0.58 (0.42-0.82) after adjustment for clustering and potential confounding. Dietary risk factors for PM after similar adjustment showed that drinking whole milk (OR 0.67, 95%CI 0.47-0.96) and eating red meat were protective with an OR 0.67 (0.46-0.99) for eating red meat >3 times/wk. DISCUSSION: In this case-referent study of men attending an infertility clinic for fertility diagnosis, we have identified that low MSC is inversely associated with daidzein intake. In contrast, daidzein intake was not associated with PM but eating red milk and drinking whole milk were protective. CONCLUSIONS: Dietary factors associated with semen quality were identified, suggesting that male fertility might be improved by dietary changes.


Asunto(s)
Infertilidad Masculina/dietoterapia , Isoflavonas/farmacología , Fitoestrógenos/farmacología , Recuento de Espermatozoides , Espermatozoides/efectos de los fármacos , Estudios de Casos y Controles , Dieta , Preferencias Alimentarias , Humanos , Masculino , Carne/efectos adversos , Factores de Riesgo , Análisis de Semen , Alimentos de Soja/análisis , Encuestas y Cuestionarios
15.
Nat Commun ; 11(1): 1528, 2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-32251294

RESUMEN

The occurrence of repetitive genomic changes that provide a selective growth advantage in pluripotent stem cells is of concern for their clinical application. However, the effect of different culture conditions on the underlying mutation rate is unknown. Here we show that the mutation rate in two human embryonic stem cell lines derived and banked for clinical application is low and not substantially affected by culture with Rho Kinase inhibitor, commonly used in their routine maintenance. However, the mutation rate is reduced by >50% in cells cultured under 5% oxygen, when we also found alterations in imprint methylation and reversible DNA hypomethylation. Mutations are evenly distributed across the chromosomes, except for a slight increase on the X-chromosome, and an elevation in intergenic regions suggesting that chromatin structure may affect mutation rate. Overall the results suggest that pluripotent stem cells are not subject to unusually high rates of genetic or epigenetic alterations.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Cromosomas Humanos X/genética , ADN Intergénico/genética , Tasa de Mutación , Células Madre Pluripotentes/fisiología , Línea Celular , Medios de Cultivo/farmacología , Metilación de ADN , Análisis Mutacional de ADN , Epigénesis Genética , Humanos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Oxígeno/química , Oxígeno/farmacología , Análisis de Secuencia de ARN , Secuenciación Completa del Genoma
16.
Mol Vis ; 15: 283-95, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19204785

RESUMEN

PURPOSE: To examine the ability of retinal pigment epithelial (RPE) cells derived from human embryonic stem cells (HESC) to phagocytose photoreceptor outer segments, and to determine whether exposure to human retina induces any morphological changes in these cells. METHODS: HESC-RPE cells were derived from a super-confluent preparation of the Shef1 HESC line. Pigmented colonies were isolated and expanded into pigmented monolayers on Matrigel matrix-coated dishes or filters. Cells were exposed to fluorescently labeled outer segments isolated from the porcine eye and assessed for phagocytic activity at regular intervals. Expression of molecules associated with RPE phagocytosis was analyzed by RT-PCR, immunocytochemistry, and western blot. The role of Mer Tyrosine Kinase (MERTK) in the phagocytosis of outer segments was investigated using antibodies directed against MERTK to block function. In a novel approach, cells were also exposed to fresh human neural retina tissue then examined by electron microscopy for evidence of phagocytosis and changes in cell morphology. RESULTS: HESC-derived RPE cells are capable of phagocytosing isolated porcine outer segments and express molecules associated with RPE-specific phagocytosis, including MERTK. Pre-incubation with antibodies against MERTK blocked phagocytosis of photoreceptor outer segments, but not polystyrene beads. HESC-RPE cells also phagocytosed outer segments in a novel human retinal explant system. Furthermore co-culture adjacent to human retina tissue in this preparation resulted in the appearance of features in HESC-derived RPE cells normally observed only as the RPE matures. CONCLUSIONS: The ingestion of photoreceptor outer segments from an isolated population and an artificial ex vivo human retina system demonstrates HESC-derived RPE cells are functional. HESC-derived RPE possess the relevant molecules required for phagocytosis, including MERTK, which is essential for the phagocytosis of outer segments but not latex beads. Furthermore, some changes observed in cell morphology after co-culture with human retina may have implications for understanding the full development and differentiation of RPE cells.


Asunto(s)
Células Madre Embrionarias/citología , Fagocitosis/fisiología , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Segmento Externo de las Células Fotorreceptoras Retinianas/fisiología , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/fisiología , Análisis de Varianza , Animales , Células Cultivadas , Células Madre Embrionarias/ultraestructura , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Humanos , Inmunohistoquímica , Proteínas Proto-Oncogénicas/genética , Proteínas Tirosina Quinasas Receptoras/genética , Retina/fisiología , Retina/ultraestructura , Epitelio Pigmentado de la Retina/ultraestructura , Porcinos , Tirosina Quinasa c-Mer
17.
Dose Response ; 17(3): 1559325819876760, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31579111

RESUMEN

1,3-Dinitrobenzene (mDNB) is a widely used intermediate in commercial products and causes testicular injury. However, genotoxic effects upon low-level exposure are poorly understood. The present study evaluated the effects of very low-chronic doses of mDNB on sperm nuclear integrity. Male hamsters were treated with 1.5 mg/kg/d/4 wks (group A), 1.5 mg/kg/mDNB/d/week/4 weeks (group B), 1.0 mg/kg/mDNB/3 d/wk/4 wks (group C), or polyethylene glycol 600 (control). Nuclear integrity of distal cauda epididymal sperm was determined using the sperm chromatin structure assay and acridine orange staining (AOS). The germ cell nuclear integrity was assessed by the comet assay. Testicular histopathology was conducted to evaluate the sensitive stages. The comet assay revealed denatured nuclear DNA in group A (in diploid and polyploid cells from weeks 2-5); respectively at week 4 and weeks 3 to 4 in groups B and C. According to AOS, only group A animals exhibited denatured sperm DNA (weeks 1 and 3). The effective sperm count declined from weeks 1 to 6. Mean sperm DNA denaturation extent, percentage cells outside the main population, and standard deviation indicated altered sperm nuclear integrity in group A. Same animals exhibited progressive disruption of the Sertoli cells, while groups B and C exhibited damages on germ cells. The results suggest that mDNB affects sperm nuclear integrity at very low chronic doses targeting cell-specific testicular damage.

18.
Regen Med ; 14(3): 243-255, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30938271

RESUMEN

Human stem cells have the potential to transform medicine. However, hurdles remain to ensure that manufacturing processes produce safe and effective products. A thorough understanding of the biological processes occurring during manufacture is fundamental to assuring these qualities and thus, their acceptability to regulators and clinicians. Leaders in both human pluripotent and somatic stem cells, were brought together with experts in clinical translation, biomanufacturing and regulation, to discuss key issues in assuring appropriate manufacturing conditions for delivery of effective and safe products from these cell types. This report summarizes the key issues discussed and records consensus reached by delegates and emphasizes the need for accurate language and nomenclature in the scientific discourse around stem cells.


Asunto(s)
Células Madre Adultas/citología , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Células Madre Pluripotentes/citología , Medicina Regenerativa , Congresos como Asunto , Humanos
19.
Hear Res ; 233(1-2): 23-9, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17646067

RESUMEN

The development of new stem cell-based technologies is creating new hopes in regenerative medicine. Hearing-impaired individuals should benefit greatly from the development of a cell-based regenerative strategy to treat deafness. An important achievement would be to develop a human-based system that could bring the advances made in animal models closer to clinical application. In this work, we have explored the suitability of the developing fetal cochlea to be used as a source for the extraction of auditory progenitor/stem cells. We have established cultures that express critical markers such as NESTIN, SOX2, GATA3 and PAX2. These cultures can be expanded in vitro for several months and differentiating markers such as ATOH1/HATH1 and POU4F3/BRN3C can be induced by manipulating the culture conditions using specific growth factors such as bFGF, EGF and retinoic acid.


Asunto(s)
Separación Celular , Cóclea/citología , Cóclea/embriología , Células Madre , Biomarcadores/análisis , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Cóclea/química , Embrión de Mamíferos/química , Embrión de Mamíferos/citología , Humanos , Immunoblotting , Péptidos y Proteínas de Señalización Intercelular/farmacología , Proteínas de Filamentos Intermediarios/análisis , Proteínas del Tejido Nervioso/análisis , Nestina , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Madre/química , Células Madre/citología
20.
Nat Biotechnol ; 22(1): 53-4, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14661028

RESUMEN

We have observed karyotypic changes involving the gain of chromosome 17q in three independent human embryonic stem (hES) cell lines on five independent occasions. A gain of chromosome 12 was seen occasionally. This implies that increased dosage of chromosome 17q and 12 gene(s) provides a selective advantage for the propagation of undifferentiated hES cells. These observations are instructive for the future application of hES cells in transplantation therapies in which the use of aneuploid cells could be detrimental.


Asunto(s)
Aberraciones Cromosómicas , Cromosomas Humanos Par 12 , Cromosomas Humanos Par 17 , Embrión de Mamíferos/citología , Células Madre/citología , Aneuploidia , Animales , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Células Cultivadas , Bandeo Cromosómico , Humanos , Hibridación Fluorescente in Situ , Cariotipificación , Modelos Genéticos , Manejo de Especímenes , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA