Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Science ; 383(6681): 406-412, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38271507

RESUMEN

We assess which waters the Clean Water Act protects and how Supreme Court and White House rules change this regulation. We train a deep learning model using aerial imagery and geophysical data to predict 150,000 jurisdictional determinations from the Army Corps of Engineers, each deciding regulation for one water resource. Under a 2006 Supreme Court ruling, the Clean Water Act protects two-thirds of US streams and more than half of wetlands; under a 2020 White House rule, it protects less than half of streams and a fourth of wetlands, implying deregulation of 690,000 stream miles, 35 million wetland acres, and 30% of waters around drinking-water sources. Our framework can support permitting, policy design, and use of machine learning in regulatory implementation problems.


Asunto(s)
Agua Potable , Aprendizaje Automático , Ríos , Contaminación del Agua , Calidad del Agua , Humedales , Agua Potable/legislación & jurisprudencia , Contaminación del Agua/legislación & jurisprudencia , Contaminación del Agua/prevención & control , Conservación de los Recursos Naturales
2.
PeerJ ; 11: e16206, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37868045

RESUMEN

Bicycles are more difficult to control at low speeds due to the vehicle's unstable low-speed dynamics. This issue might be exacerbated by factors such as aging, disturbances, and multi-tasking. To address this issue, we developed a prototype 'balance assist system' with Royal Dutch Gazelle and Bosch eBike Systems at Delft University of Technology, which includes an electric motor capable of providing additional steering torque. We implemented a speed-adaptive feedback controller to generate the additional steering torque to that of the rider. We conducted a study with 18 older and 14 younger cyclists to first examine the effect of aging, disturbances, and multi-tasking on cycling at lower forward speeds, and evaluate the effectiveness of the system in improving the stability of the rider-bicycle system while facing these challenges. The study consisted of two scenarios: a single-task scenario where participants rode the bicycle on a marked narrow straight-line track, and a multi-task scenario where participants performed a shoulder check task and followed visual cues while tracking the straight-line. We introduced handlebar disturbances using the steer motor in half of the trials in both scenarios. All trials were repeated with and without the balance assist system. We calculated the bicycle mean magnitude of roll and steering rate-as indicators of bicycle balance control and required steering actions, respectively-and the rider's mean magnitude of lean rate with respect to the ground to investigate the effect of the balance assist system on rider's lateral motion. Our results showed that aging, disturbances, and multi-tasking increased the roll rate, and the balance assist system was able to significantly reduce it. The effect size of the balance assist system in reducing the roll rate across all conditions was found to be larger in older cyclists, indicating a more substantial impact compared to younger cyclists. Disturbances and multi-tasking increased the steering rate, which was successfully reduced by the balance assist system. Aging did not significantly affect the steering rate. The rider's lean rate was not significantly affected by age, disturbances, or the balance assist, indicating that the upper body plays a minor role when riders have good steering control authority. Overall, our findings suggest that lateral motion and required steering action can be affected by age, multi-tasking, and handlebar disturbances which can endanger cyclists' safety, and the balance assist system has the potential to improve cycling safety and reduce the incidence of single-actor crashes. Further investigation on riders' contribution to control actions is required.


Asunto(s)
Envejecimiento , Ciclismo , Humanos , Anciano , Movimiento (Física)
3.
PLoS One ; 14(12): e0225690, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31805092

RESUMEN

Competitive rowing highly values boat position and velocity data for real-time feedback during training, racing and post-training analysis. The ubiquity of smartphones with embedded position (GPS) and motion (accelerometer) sensors motivates their possible use in these tasks. In this paper, we investigate the use of two real-time digital filters to achieve highly accurate yet reasonably priced measurements of boat speed and distance traveled. Both filters combine acceleration and location data to estimate boat distance and speed; the first using a complementary frequency response-based filter technique, the second with a Kalman filter formalism that includes adaptive, real-time estimates of effective accelerometer bias. The estimates of distance and speed from both filters were validated and compared with accurate reference data from a differential GPS system with better than 1 cm precision and a 5 Hz update rate, in experiments using two subjects (an experienced club-level rower and an elite rower) in two different boats on a 300 m course. Compared with single channel (smartphone GPS only) measures of distance and speed, the complementary filter improved the accuracy and precision of boat speed, boat distance traveled, and distance per stroke by 44%, 42%, and 73%, respectively, while the Kalman filter improved the accuracy and precision of boat speed, boat distance traveled, and distance per stroke by 48%, 22%, and 82%, respectively. Both filters demonstrate promise as general purpose methods to substantially improve estimates of important rowing performance metrics.


Asunto(s)
Aceleración , Rendimiento Atlético , Teléfono Inteligente/instrumentación , Deportes Acuáticos , Humanos , Cinética
4.
PeerJ ; 3: e918, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25945311

RESUMEN

Here we share a rich gait data set collected from fifteen subjects walking at three speeds on an instrumented treadmill. Each trial consists of 120 s of normal walking and 480 s of walking while being longitudinally perturbed during each stance phase with pseudo-random fluctuations in the speed of the treadmill belt. A total of approximately 1.5 h of normal walking (>5000 gait cycles) and 6 h of perturbed walking (>20,000 gait cycles) is included in the data set. We provide full body marker trajectories and ground reaction loads in addition to a presentation of processed data that includes gait events, 2D joint angles, angular rates, and joint torques along with the open source software used for the computations. The protocol is described in detail and supported with additional elaborate meta data for each trial. This data can likely be useful for validating or generating mathematical models that are capable of simulating normal periodic gait and non-periodic, perturbed gaits.

5.
F1000Res ; 3: 223, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25717365

RESUMEN

We present an open source software implementation of a popular mathematical method developed by M.R. Yeadon for calculating the body and segment inertia parameters of a human body. The software is written in a high level open source language and provides three interfaces for manipulating the data and the model: a Python API, a command-line user interface, and a graphical user interface. Thus the software can fit into various data processing pipelines and requires only simple geometrical measures as input.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA