Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 614(7947): 249-255, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36755173

RESUMEN

The exciton, a bound state of an electron and a hole, is a fundamental quasiparticle induced by coherent light-matter interactions in semiconductors. When the electrons and holes are in distinct spatial locations, spatially indirect excitons are formed with a much longer lifetime and a higher condensation temperature. One of the ultimate frontiers in this field is to create long-lived excitonic topological quasiparticles by driving exciton states with topological properties, to simultaneously leverage both topological effects and correlation1,2. Here we reveal the existence of a transient excitonic topological surface state (TSS) in a topological insulator, Bi2Te3. By using time-, spin- and angle-resolved photoemission spectroscopy, we directly follow the formation of a long-lived exciton state as revealed by an intensity buildup below the bulk-TSS mixing point and an anomalous band renormalization of the continuously connected TSS in the momentum space. Such a state inherits the spin-polarization of the TSS and is spatially indirect along the z axis, as it couples photoinduced surface electrons and bulk holes in the same momentum range, which ultimately leads to an excitonic state of the TSS. These results establish Bi2Te3 as a possible candidate for the excitonic condensation of TSSs3 and, in general, opens up a new paradigm for exploring the momentum space emergence of other spatially indirect excitons, such as moiré and quantum well excitons4-6, and for the study of non-equilibrium many-body topological physics.

2.
Proc Natl Acad Sci U S A ; 120(21): e2220589120, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37186856

RESUMEN

The propagation of spin waves in magnetically ordered systems has emerged as a potential means to shuttle quantum information over large distances. Conventionally, the arrival time of a spin wavepacket at a distance, d, is assumed to be determined by its group velocity, vg. Here, we report time-resolved optical measurements of wavepacket propagation in the Kagome ferromagnet Fe3Sn2 that demonstrate the arrival of spin information at times significantly less than d/vg. We show that this spin wave "precursor" originates from the interaction of light with the unusual spectrum of magnetostatic modes in Fe3Sn2. Related effects may have far-reaching consequences toward realizing long-range, ultrafast spin wave transport in both ferromagnetic and antiferromagnetic systems.

3.
Phys Rev Lett ; 132(19): 196601, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38804931

RESUMEN

The gapped symmetric phase of the Affleck-Kennedy-Lieb-Tasaki model exhibits fractionalized spins at the ends of an open chain. We show that breaking SU(2) symmetry and applying a global spin-lowering dissipator achieves synchronization of these fractionalized spins. Additional local dissipators ensure convergence to the ground state manifold. In order to understand which aspects of this synchronization are robust within the entire Haldane-gap phase, we reduce the biquadratic term, which eliminates the need for an external field but destabilizes synchronization. Within the ground state subspace, stability is regained using only the global lowering dissipator. These results demonstrate that fractionalized degrees of freedom can be synchronized in extended systems with a significant degree of robustness arising from topological protection. A direct consequence is that permutation symmetries are not required for the dynamics to be synchronized, representing a clear advantage of topological synchronization compared to synchronization induced by permutation symmetries.

4.
Proc Natl Acad Sci U S A ; 118(48)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34819380

RESUMEN

Chiral Weyl fermions with linear energy-momentum dispersion in the bulk accompanied by Fermi-arc states on the surfaces prompt a host of enticing optical effects. While new Weyl semimetal materials keep emerging, the available optical probes are limited. In particular, isolating bulk and surface electrodynamics in Weyl conductors remains a challenge. We devised an approach to the problem based on near-field photocurrent imaging at the nanoscale and applied this technique to a prototypical Weyl semimetal TaIrTe4 As a first step, we visualized nano-photocurrent patterns in real space and demonstrated their connection to bulk nonlinear conductivity tensors through extensive modeling augmented with density functional theory calculations. Notably, our nanoscale probe gives access to not only the in-plane but also the out-of-plane electric fields so that it is feasible to interrogate all allowed nonlinear tensors including those that remained dormant in conventional far-field optics. Surface- and bulk-related nonlinear contributions are distinguished through their "symmetry fingerprints" in the photocurrent maps. Robust photocurrents also appear at mirror-symmetry breaking edges of TaIrTe4 single crystals that we assign to nonlinear conductivity tensors forbidden in the bulk. Nano-photocurrent spectroscopy at the boundary reveals a strong resonance structure absent in the interior of the sample, providing evidence for elusive surface states.

5.
Nat Mater ; 21(7): 748-753, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35710632

RESUMEN

One-dimensional electron systems exhibit fundamentally different properties than higher-dimensional systems. For example, electron-electron interactions in one-dimensional electron systems have been predicted to induce Tomonaga-Luttinger liquid behaviour. Naturally occurring grain boundaries in single-layer transition metal dichalcogenides exhibit one-dimensional conducting channels that have been proposed to host Tomonaga-Luttinger liquids, but charge density wave physics has also been suggested to explain their behaviour. Clear identification of the electronic ground state of this system has been hampered by an inability to electrostatically gate such boundaries and tune their charge carrier concentration. Here we present a scanning tunnelling microscopy and spectroscopy study of gate-tunable mirror twin boundaries in single-layer 1H-MoSe2 devices. Gating enables scanning tunnelling microscopy and spectroscopy for different mirror twin boundary electron densities, thus allowing precise characterization of electron-electron interaction effects. Visualization of the resulting mirror twin boundary electronic structure allows unambiguous identification of collective density wave excitations having two velocities, in quantitative agreement with the spin-charge separation predicted by finite-length Tomonaga-Luttinger liquid theory.

6.
Proc Natl Acad Sci U S A ; 117(23): 12713-12718, 2020 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-32457150

RESUMEN

Metals in one spatial dimension are described at the lowest energy scales by the Luttinger liquid theory. It is well understood that this free theory, and even interacting integrable models, can support ballistic transport of conserved quantities including energy. In contrast, realistic one-dimensional metals, even without disorder, contain integrability-breaking interactions that are expected to lead to thermalization and conventional diffusive linear response. We argue that the expansion of energy when such a nonintegrable Luttinger liquid is locally heated above its ground state shows superdiffusive behavior (i.e., spreading of energy that is intermediate between diffusion and ballistic propagation), by combining an analytical anomalous diffusion model with numerical matrix-product-state calculations on a specific perturbed spinless fermion chain. Different metals will have different scaling exponents and shapes in their energy spreading, but the superdiffusive behavior is stable and should be visible in time-resolved experiments.

7.
Phys Rev Lett ; 129(17): 177701, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36332252

RESUMEN

High fidelity quantum information processing requires a combination of fast gates and long-lived quantum memories. In this Letter, we propose a hybrid architecture, where a parity-protected superconducting qubit is directly coupled to a Majorana qubit, which plays the role of a quantum memory. The superconducting qubit is based upon a π-periodic Josephson junction realized with gate-tunable semiconducting wires, where the tunneling of individual Cooper pairs is suppressed. One of the wires additionally contains four Majorana zero modes that define a qubit. We demonstrate that this enables the implementation of a SWAP gate, allowing for the transduction of quantum information between the topological and conventional qubit. This architecture combines fast gates, which can be realized with the superconducting qubit, with a topologically protected Majorana memory.

8.
Am J Dent ; 35(2): 69-74, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35506960

RESUMEN

PURPOSE: To use non-inferiority statistical testing with simple microhardness measurements (SMH) as a prediction of potential erosive hard tissue damage of topical treatments on enamel. METHODS: Three independent experiments of a simple acid cycling demineralization (ACD) model were used to screen softening effects of various commercial beverages on dental enamel. The cycling model consists of six repeated exposures of enamel slabs with alternating treatments of artificial saliva over the course of 6 hours. After six repeated cycles, effects on surface microhardness were measured. Softening effects of beverages were evaluated using a statistical non-inferiority test of the positive control (water) and negative control (1% citric acid). To confirm whether softening effects as evaluated by a non-inferiority test translated to like differences in enamel erosion susceptibility, selected beverages then underwent more complex erosion cycling model (ECM) evaluation where enamel blocks were cycled with beverages (vs. historically established citric acid) and pooled saliva over a period of 5 days. The ECM also incorporated dentifrice treatments, sodium fluoride (NaF, Crest Cavity Protection, negative control) and a positive control stannous fluoride dentifrice (SnF2, Crest Pro-Health Advanced), to confirm model performance against historically published results of in situ erosion protection benefits of SnF2. RESULTS: There was a spectrum of softening properties of 16 commercial beverages in the ACD test, ranging from a ΔSMH of -22.6 to -316 vs. baseline. Four beverages were evaluated further in ECM testing. Despite a measurable change in SMH, Sprite and beer treatments in the ACD passed the statistical non-inferiority test and both were evaluated in erosion cycling, showing no enamel surface loss. Vinegar (~5% acetic acid) and Gatorade also showed measurable changes in SMH in the ACD, but they failed statistical non-inferiority testing. Both beverages subsequently showed significant enamel tissue loss (erosion) in further erosion cycling testing. This combined set of data suggests that simple surface microhardness evaluation may be used as a proxy for potential erosion surface loss if properly quantified. SnF2 dentifrice significantly reduced erosion from all erosive beverages with greater efficacy than NaF control dentifrice, consistent with prior clinical and in vitro evidence. CLINICAL SIGNIFICANCE: The ACD model with application of non-inferiority statistical testing is proposed as a simple model of hard tissue safety assessment of treatments, including oral hygiene products. Products that pass the non-inferiority test in ACD (surface softening) are proposed as safe for enamel as there is no suggestion from this data that teeth are at risk of tissue loss due to these products. On the other hand, products failing the non-inferiority test require confirmatory safety qualification in erosion cycling. Products equal or worse than citric acid with ACD or with significant erosion in ECM are suggested to warrant reformulation unless favorable safety data for enamel (lack of erosion) or the appropriate justification are provided.


Asunto(s)
Dentífricos , Erosión de los Dientes , Ácido Cítrico/efectos adversos , Esmalte Dental , Dentífricos/farmacología , Fluoruros/farmacología , Humanos , Fluoruro de Sodio/farmacología , Erosión de los Dientes/etiología , Erosión de los Dientes/prevención & control
9.
Phys Rev Lett ; 127(17): 170601, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34739298

RESUMEN

We study the representational power of Boltzmann machines (a type of neural network) in quantum many-body systems. We prove that any (local) tensor network state has a (local) neural network representation. The construction is almost optimal in the sense that the number of parameters in the neural network representation is almost linear in the number of nonzero parameters in the tensor network representation. Despite the difficulty of representing (gapped) chiral topological states with local tensor networks, we construct a quasilocal neural network representation for a chiral p-wave superconductor. These results demonstrate the power of Boltzmann machines.

10.
Phys Rev Lett ; 126(18): 187701, 2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-34018786

RESUMEN

In superconducting circuits interrupted by Josephson junctions, the dependence of the energy spectrum on offset charges on different islands is 2e periodic through the Aharonov-Casher effect and resembles a crystal band structure that reflects the symmetries of the Josephson potential. We show that higher-harmonic Josephson elements described by a cos(2φ) energy-phase relation provide an increased freedom to tailor the shape of the Josephson potential and design spectra featuring multiplets of flat bands and Dirac points in the charge Brillouin zone. Flat bands provide noise-insensitive energy levels, and consequently, engineering band pairs with flat spectral gaps can help improve the coherence of the system. We discuss a modified version of a flux qubit that achieves, in principle, no decoherence from charge noise and introduce a flux qutrit that shows a spin-1 Dirac spectrum and is simultaneously quite robust to both charge and flux noise.

11.
Phys Rev Lett ; 127(8): 087201, 2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34477420

RESUMEN

At strong repulsion, the triangular-lattice Hubbard model is described by s=1/2 spins with nearest-neighbor antiferromagnetic Heisenberg interactions and exhibits conventional 120° order. Using the infinite density matrix renormalization group and exact diagonalization, we study the effect of the additional four-spin interactions naturally generated from the underlying Mott-insulator physics of electrons as the repulsion decreases. Although these interactions have historically been connected with a gapless ground state with emergent spinon Fermi surface, we find that, at physically relevant parameters, they stabilize a chiral spin liquid (CSL) of Kalmeyer-Laughlin (KL) type, clarifying observations in recent studies of the Hubbard model. We then present a self-consistent solution based on a mean-field rewriting of the interaction to obtain a Hamiltonian with similarities to the parent Hamiltonian of the KL state, providing a physical understanding for the origin of the CSL.

12.
Phys Rev Lett ; 127(10): 107201, 2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34533348

RESUMEN

The stranglehold of low temperatures on fascinating quantum phenomena in one-dimensional quantum magnets has been challenged recently by the discovery of anomalous spin transport at high temperatures. Whereas both regimes have been investigated separately, no study has attempted to reconcile them. For instance, the paradigmatic quantum Heisenberg spin-1/2 chain falls at low temperature within the Tomonaga-Luttinger liquid framework, while its high-temperature dynamics is superdiffusive and relates to the Kardar-Parisi-Zhang universality class in 1+1 dimensions. This Letter aims at reconciling the two regimes. Building on large-scale matrix product state simulations, we find that they are connected by a temperature-dependent spatiotemporal crossover. As the temperature T is reduced, we show that the onset of superdiffusion takes place at longer length and timescales ∝1/T. This prediction has direct consequences for experiments including nuclear magnetic resonance: it is consistent with earlier measurements on the nearly ideal Heisenberg S=1/2 chain compound Sr_{2}CuO_{3}, yet calls for new and dedicated experiments.

13.
Phys Rev Lett ; 126(15): 156602, 2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33929246

RESUMEN

We study how the intrinsic anomalous Hall conductivity is modified in two-dimensional crystals with broken time-reversal symmetry due to weak inhomogeneity of the applied electric field. Focusing on a clean noninteracting two-band system without band crossings, we derive the general expression for the Hall conductivity at small finite wave vector q to order q^{2}, which governs the Hall response to the second gradient of the electric field. Using the Kubo formula, we show that the answer can be expressed through the Berry curvature, Fubini-Study quantum metric, and the rank-3 symmetric tensor which is related to the quantum geometric connection and physically corresponds to the gauge-invariant part of the third cumulant of the position operator. We further compare our results with the predictions made within the semiclassical approach. By deriving the semiclassical equations of motion, we reproduce the result obtained from the Kubo formula in some limits. We also find, however, that the conventional semiclassical description in terms of the definite position and momentum of the electron is not fully consistent because of singular terms originating from the Heisenberg uncertainty principle. We thus present a clear example of a case when the semiclassical approach inherently suffers from the uncertainty principle, implying that it should be applied to systems in nonuniform fields with extra care.

14.
Phys Rev Lett ; 126(7): 076801, 2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33666465

RESUMEN

Two-dimensional (2D) Dirac fermions are a central paradigm of modern condensed matter physics, describing low-energy excitations in graphene, in certain classes of superconductors, and on surfaces of 3D topological insulators. At zero energy E=0, Dirac fermions with mass m are band insulators, with the Chern number jumping by unity at m=0. This observation lead Ludwig et al. [Phys. Rev. B 50, 7526 (1994)PRBMDO0163-182910.1103/PhysRevB.50.7526] to conjecture that the transition in 2D disordered Dirac fermions (DDF) and the integer quantum Hall transition (IQHT) are controlled by the same fixed point and possess the same universal critical properties. Given the far-reaching implications for the emerging field of the quantum anomalous Hall effect, modern condensed matter physics, and our general understanding of disordered critical points, it is surprising that this conjecture has never been tested numerically. Here, we report the results of extensive numerics on the phase diagram and criticality of 2D DDF in the unitary class. We find a critical line at m=0, with an energy-dependent localization length exponent. At large energies, our results for the DDF are consistent with state-of-the-art numerical results ν_{IQH}=2.56-2.62 from models of the IQHT. At E=0, however, we obtain ν_{0}=2.30-2.36 incompatible with ν_{IQH}. This result challenges conjectured relations between different models of the IQHT, and several interpretations are discussed.

15.
Phys Rev Lett ; 127(1): 015301, 2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34270282

RESUMEN

The Hopf insulator is a weak topological insulator characterized by an insulating bulk with conducting edge states protected by an integer-valued linking number invariant. The state exists in three-dimensional two-band models. We demonstrate that the Hopf insulator can be naturally realized in lattices of dipolar-interacting spins, where spin exchange plays the role of particle hopping. The long-ranged, anisotropic nature of the dipole-dipole interactions allows for the precise detail required in the momentum-space structure, while different spin orientations ensure the necessary structure of the complex phases of the hoppings. Our model features robust gapless edge states at both smooth edges, as well as sharp edges obeying a certain crystalline symmetry, despite the breakdown of the two-band picture at the latter. In an accompanying paper [T. Schuster et al., Phys. Rev. A 103, AW11986 (2021)PLRAAN2469-9926] we provide a specific experimental blueprint for implementing our proposal using ultracold polar molecules of ^{40}K^{87}Rb.

16.
Phys Rev Lett ; 126(3): 030602, 2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33543957

RESUMEN

Many-body chaos has emerged as a powerful framework for understanding thermalization in strongly interacting quantum systems. While recent analytic advances have sharpened our intuition for many-body chaos in certain large N theories, it has proven challenging to develop precise numerical tools capable of exploring this phenomenon in generic Hamiltonians. To this end, we utilize massively parallel, matrix-free Krylov subspace methods to calculate dynamical correlators in the Sachdev-Ye-Kitaev model for up to N=60 Majorana fermions. We begin by showing that numerical results for two-point correlation functions agree at high temperatures with dynamical mean field solutions, while at low temperatures finite-size corrections are quantitatively reproduced by the exactly solvable dynamics of near extremal black holes. Motivated by these results, we develop a novel finite-size rescaling procedure for analyzing the growth of out-of-time-order correlators. Our procedure accurately determines the Lyapunov exponent, λ, across a wide range in temperatures, including in the regime where λ approaches the universal bound, λ=2π/ß.

17.
Bioorg Med Chem Lett ; 40: 127886, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33662540

RESUMEN

Soluble guanylate cyclase (sGC) is a clinically validated therapeutic target in the treatment of pulmonary hypertension. Modulators of sGC have the potential to treat diseases that are affected by dysregulation of the NO-sGC-cGMP signal transduction pathway. This letter describes the SAR efforts that led to the discovery of CYR715, a novel carboxylic acid-containing sGC stimulator, with an improved metabolic profile relative to our previously described stimulator, IWP-051. CYR715 addressed potential idiosyncratic drug toxicity (IDT) liabilities associated with the formation of reactive, migrating acyl glucuronides (AG) found in related carboxylic acid-containing analogs and demonstrated high oral bioavailability in rat and dose-dependent hemodynamic pharmacology in normotensive Sprague-Dawley rats.


Asunto(s)
Ácidos Carboxílicos/química , Glucurónidos/química , Hipertensión Pulmonar/tratamiento farmacológico , Guanilil Ciclasa Soluble/metabolismo , Vasodilatadores/química , Administración Oral , Animales , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Glucurónidos/administración & dosificación , Glucurónidos/farmacocinética , Humanos , Masculino , Metaboloma , Modelos Moleculares , Óxido Nítrico/metabolismo , Estrés Oxidativo/efectos de los fármacos , Unión Proteica , Ratas Sprague-Dawley , Transducción de Señal , Relación Estructura-Actividad , Vasodilatadores/administración & dosificación , Vasodilatadores/farmacocinética
18.
Phys Rev Lett ; 124(19): 196603, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32469533

RESUMEN

The chiral photocurrent or circular photogalvanic effect (CPGE) is a photocurrent that depends on the sense of circular polarization. In a disorder-free, noninteracting chiral Weyl semimetal, the magnitude of the effect is approximately quantized with a material-independent quantum e^{3}/h^{2} for reasons of band topology. We study the first-order corrections due to the Coulomb and Hubbatrd interactions in a continuum model of a Weyl semimetal in which known corrections from other bands are absent. We find that the inclusion of interactions generically breaks the quantization. The corrections are similar but larger in magnitude than previously studied interaction corrections to the (nontopological) linear optical conductivity of graphene, and have a potentially observable frequency dependence. We conclude that, unlike the quantum Hall effect in gapped phases or the chiral anomaly in field theories, the quantization of the CPGE in Weyl semimetals is not protected but has perturbative corrections in interaction strength.

19.
Environ Sci Technol ; 54(2): 778-789, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31845802

RESUMEN

Increasing specific conductance (SC) and chloride concentrations [Cl] negatively affect many stream ecosystems. We characterized spatial variability in SC, [Cl], and exceedances of Environmental Protection Agency [Cl] criteria using nearly 30 million high-frequency observations (2-15 min intervals) for SC and modeled [Cl] from 93 sites across three regions in the eastern United States: Southeast, Mid-Atlantic, and New England. SC and [Cl] increase substantially from south to north and within regions with impervious surface cover (ISC). In the Southeast, [Cl] weakly correlates with ISC, no [Cl] exceedances occur, and [Cl] concentrations are constant with time. In the Mid-Atlantic and New England, [Cl] and [Cl] exceedances strongly correlate with ISC. [Cl] criteria are frequently exceeded at sites with greater than 9-10% ISC and median [Cl] higher than 30-80 mg/L. Tens to hundreds of [Cl] exceedances observed annually at most of these sites help explain previous research where stream ecosystems showed changes at (primarily nonwinter) [Cl] as low as 30-40 mg/L. Mid-Atlantic chronic [Cl] exceedances occur primarily in December-March. In New England, exceedances are common in nonwinter months. [Cl] is increasing at nearly all Mid-Atlantic and New England sites with the largest increases at sites with higher [Cl].


Asunto(s)
Ríos , Contaminantes Químicos del Agua , Ecosistema , Monitoreo del Ambiente , New England , Sales (Química) , Estados Unidos , United States Environmental Protection Agency
20.
Nature ; 576(7787): 390-392, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31853070
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA