Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Opt Express ; 23(11): 13937-46, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-26072763

RESUMEN

We present a proof of concept prototype of a time-domain diffuse optics probe exploiting a fast Silicon PhotoMultiplier (SiPM), featuring a timing resolution better than 80 ps, a fast tail with just 90 ps decay time-constant and a wide active area of 1 mm2. The detector is hosted into the probe and used in direct contact with the sample under investigation, thus providing high harvesting efficiency by exploiting the whole SiPM numerical aperture and also reducing complexity by avoiding the use of cumbersome fiber bundles. Our tests also demonstrate high accuracy and linearity in retrieving the optical properties and suitable contrast and depth sensitivity for detecting localized inhomogeneities. In addition to a strong improvement in both instrumentation cost and size with respect to legacy solutions, the setup performances are comparable to those of state-of-the-art time-domain instrumentation, thus opening a new way to compact, low-cost and high-performance time-resolved devices for diffuse optical imaging and spectroscopy.

2.
Appl Opt ; 53(31): 7394-401, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25402904

RESUMEN

In this paper we demonstrate the advantages of a fast-gated counter in achieving high count-rate and reducing costs of timing equipment in a time-resolved diffuse optical spectroscopy setup. We experimentally prove the equivalence between the fast-gated counter we developed and a traditional time-correlated single-photon counting setup in terms of depth sensitivity and signal-to-noise ratio. Additionally, we show the suitability of this device for bilayer analysis and to estimate the absorption coefficient of homogeneous diffusing media. Finally, we present a proof-of-principle arterial occlusion measurement on a healthy volunteer to validate the proposed approach in a real application. Fast-gated counters can dramatically reduce both costs and complexity in time-resolved multichannel systems, while achieving high count-rate, thus offering a great advantage in applications like brain and muscle functional imaging.

3.
Biomed Opt Express ; 12(2): 1105-1122, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33680561

RESUMEN

A recent upgrade of the time domain multi-wavelength optical mammograph developed by Politecnico di Milano achieved good performance in laboratory tests [Biomed. Opt. Express9, 755 (2018).10.1364/BOE.9.000755]. However, it proved unsatisfactory when in vivo measurements were finally performed. That led to a further upgrade, including the replacement of the time-to-digital converter with a new model, and the related set-up changes. The new instrument version offers improved laboratory performance (as assessed through established protocols: BIP and MEDPHOT) and good in vivo performance (extension of the scanned breast area, repeatability, consistency of estimated tissue composition with physiology). Besides introducing the new set-up and detailing its laboratory and in vivo performance, we highlight the importance of systematic in vivo testing before entering clinical trials.

4.
Biomed Opt Express ; 11(10): 5934-5949, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33149997

RESUMEN

We present a wearable time-domain near infrared spectroscopy (TD-NIRS) system (two wavelengths, one detection channel), which fits in a backpack and performs real-time hemodynamic measurements on the brain and muscle tissues of freely moving subjects. It can provide concentration values of oxygenated hemoglobin (O2Hb), deoxygenated hemoglobin (HHb), total hemoglobin (tHb = O2Hb + HHb) and tissue oxygen saturation (StO2). The system is battery-operated and can be wirelessly controlled. By following established characterization protocols for performance assessment of diffuse optics instruments, we achieved results comparable with state-of-the-art research-grade TD-NIRS systems. We also performed in-vivo measurements such as finger tapping (motor cortex monitoring), breath holding (prefrontal cortex monitoring and forearm muscle monitoring), and outdoor bike riding (vastus lateralis muscle monitoring), in order to test the system capabilities in evaluating both muscle and brain hemodynamics.

5.
Neurophotonics ; 6(3): 035001, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31312668

RESUMEN

Time-domain diffuse correlation spectroscopy (TD-DCS) is an emerging noninvasive optical technique with the potential to resolve blood flow (BF) and optical coefficients (reduced scattering and absorption) in depth. Here, we study the effects of finite temporal resolution and gate width in a realistic TD-DCS experiment. We provide a model for retrieving the BF from gated intensity autocorrelations based on the instrument response function, which allows for the use of broad time gates. This, in turn, enables a higher signal-to-noise ratio that is critical for in vivo applications. In numerical simulations, the use of the proposed model reduces the error in the estimated late gate BF from 34% to 3%. Simulations are also performed for a wide set of optical properties and source-detector separations. In a homogeneous phantom experiment, the discrepancy between later gates BF index and ungated BF index is reduced from 37% to 2%. This work not only provides a tool for data analysis but also physical insights, which can be useful for studying and optimizing the system performance.

6.
Biomed Opt Express ; 10(8): 3899-3915, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31452983

RESUMEN

Recently, multimodal imaging has gained an increasing interest in medical applications thanks to the inherent combination of strengths of the different techniques. For example, diffuse optics is used to probe both the composition and the microstructure of highly diffusive media down to a depth of few centimeters, but its spatial resolution is intrinsically low. On the other hand, ultrasound imaging exhibits the higher spatial resolution of morphological imaging, but without providing solid constitutional information. Thus, the combination of diffuse optical imaging and ultrasound may improve the effectiveness of medical examinations, e.g. for screening or diagnosis of tumors. However, the presence of an ultrasound coupling gel between probe and tissue can impair diffuse optical measurements like diffuse optical spectroscopy and diffuse correlation spectroscopy, since it may provide a direct path for photons between source and detector. A systematic study on the effect of different ultrasound coupling fluids was performed on tissue-mimicking phantoms, confirming that a water-clear gel can produce detrimental effects on optical measurements when recovering absorption/reduced scattering coefficients from time-domain spectroscopy acquisitions as well as particle Brownian diffusion coefficient from diffuse correlation spectroscopy ones. On the other hand, we show the suitability for optical measurements of other types of diffusive fluids, also compatible with ultrasound imaging.

7.
Biomed Opt Express ; 9(11): 5524-5542, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30460145

RESUMEN

In time-domain diffuse optics the sensitivity to localized absorption changes buried inside a diffusive medium depends strongly on the interplay between instrumental, optical and geometrical parameters, which can hinder the theoretical advantages of novel measurement strategies like the short source-detector distance approach. Here, we present a study based on experimental measurements and simulations to comprehensively evaluate the effect of all different parameters. Results are evaluated exploiting standardized figures of merit, like contrast and contrast-to-noise ratio, to quantify the system sensitivity to deep localized absorption perturbations. Key findings show that the most critical hardware parameter is the memory effect which ultimately limits the dynamic range. Further, a choice of the source-detector distance around 10 mm seems to be a good compromise to compensate non-idealities in practical systems still preserving the advantages of short distances. This work provides both indications for users about the best measurement conditions and strategies, and for technology developers to identify the most crucial hardware features in view of next generation diffuse optics systems.

8.
Biomed Opt Express ; 9(5): 2068-2080, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29760970

RESUMEN

We present the recipe and characterization for preparing liquid phantoms that are suitable for both near-infrared spectroscopy and diffuse correlation spectroscopy. The phantoms have well-defined and tunable optical and dynamic properties, and consist of a solution of water and glycerol with fat emulsion as the scattering element. The recipe takes into account the effect of bulk refractive index changes due to the addition of glycerol, which is commonly used to alter the sample viscosity.

10.
J Biomed Opt ; 22(8): 1-9, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28823112

RESUMEN

We validate a miniaturized pulsed laser source for use in time-domain (TD) diffuse optics, following rigorous and shared protocols for performance assessment of this class of devices. This compact source (12×6 mm2) has been previously developed for range finding applications and is able to provide short, high energy (∼100 ps, ∼0.5 nJ) optical pulses at up to 1 MHz repetition rate. Here, we start with a basic level laser characterization with an analysis of suitability of this laser for the diffuse optics application. Then, we present a TD optical system using this source and its performances in both recovering optical properties of tissue-mimicking homogeneous phantoms and in detecting localized absorption perturbations. Finally, as a proof of concept of in vivo application, we demonstrate that the system is able to detect hemodynamic changes occurring in the arm of healthy volunteers during a venous occlusion. Squeezing the laser source in a small footprint removes a key technological bottleneck that has hampered so far the realization of a miniaturized TD diffuse optics system, able to compete with already assessed continuous-wave devices in terms of size and cost, but with wider performance potentialities, as demonstrated by research over the last two decades.


Asunto(s)
Rayos Láser , Óptica y Fotónica , Dispositivos Electrónicos Vestibles , Humanos , Miniaturización , Fantasmas de Imagen
11.
J Biomed Opt ; 22(1): 15006, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28138693

RESUMEN

Reduction in scattering, high absorption, and spectral features of tissue constituents above 1000 nm could help in gaining higher spatial resolution, penetration depth, and specificity for in vivo studies, opening possibilities of near-infrared diffuse optics in tissue diagnosis. We present the characterization of collagen absorption over a broadband range (500 to 1700 nm) and compare it with spectra presented in the literature. Measurements were performed using a time-domain diffuse optical technique. The spectrum was extracted by carefully accounting for various spectral distortion effects, due to sample and system properties. The contribution of several tissue constituents (water, lipid, collagen, oxy, and deoxy-hemoglobin) to the absorption properties of a collagen-rich in vivo bone location, such as radius distal in the 500- to 1700-nm wavelength region, is also discussed, suggesting bone diagnostics as a potential area of interest.


Asunto(s)
Colágeno/farmacocinética , Absorción Ocular , Hemoglobinas/metabolismo , Metabolismo de los Lípidos , Óptica y Fotónica , Dispersión de Radiación , Sensibilidad y Especificidad , Espectroscopía Infrarroja Corta
12.
Biomed Opt Express ; 8(10): 4772-4787, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29082101

RESUMEN

Multicomponent phantom measurements are carried out to evaluate the ability of multispectral time domain diffuse optical tomography in reflectance geometry to quantify the position and the composition of small heterogeneities at depths of 1-1.5 cm in turbid media. Time-resolved data were analyzed with the Mellin-Laplace transform. Results show good localization and correct composition gradation of objects but still a lack of absolute material composition accuracy when no a priori geometry information is known.

13.
J Biomed Opt ; 21(9): 091310, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27311627

RESUMEN

The recent developments in time-domain diffuse optics that rely on physical concepts (e.g., time-gating and null distance) and advanced photonic components (e.g., vertical cavity source-emitting laser as light sources, single photon avalanche diode, and silicon photomultipliers as detectors, fast-gating circuits, and time-to-digital converters for acquisition) are focused. This study shows how these tools could lead on one hand to compact and wearable time-domain devices for point-of-care diagnostics down to the consumer level and on the other hand to powerful systems with exceptional depth penetration and sensitivity.


Asunto(s)
Imagen Óptica , Absorción Fisicoquímica , Difusión , Humanos , Dispersión de Radiación , Factores de Tiempo
14.
Neurophotonics ; 3(4): 045004, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27752520

RESUMEN

We report the development of a compact probe for time-domain (TD) functional near-infrared spectroscopy (fNIRS) based on a fast silicon photomultiplier (SiPM) that can be put directly in contact with the sample without the need of optical fibers for light collection. We directly integrated an avalanche signal amplification stage close to the SiPM, thus reducing the size of the detection channel and optimizing the signal immunity to electromagnetic interferences. The whole detection electronics was placed in a plastic screw holder compatible with the electroencephalography standard cap for measurement on brain or with custom probe holders. The SiPM is inserted into a transparent and insulating resin to avoid the direct contact of the scalp with the 100-V bias voltage. The probe was integrated in an instrument for TD fNIRS spectroscopy. The system was characterized on tissue phantoms in terms of temporal resolution, responsivity, linearity, and capability to detect deep absorption changes. Preliminary in vivo tests on adult volunteers were performed to monitor hemodynamic changes in the arm during a cuff occlusion and in the brain cortex during a motor task.

15.
J Biomed Opt ; 21(11): 116002, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27812705

RESUMEN

Silicon photomultipliers (SiPMs) have been very recently introduced as the most promising detectors in the field of diffuse optics, in particular due to the inherent low cost and large active area. We also demonstrate the suitability of SiPMs for time-domain diffuse optical tomography (DOT). The study is based on both simulations and experimental measurements. Results clearly show excellent performances in terms of spatial localization of an absorbing perturbation, thus opening the way to the use of SiPMs for DOT, with the possibility to conceive a new generation of low-cost and reliable multichannel tomographic systems.


Asunto(s)
Silicio/química , Tomografía Óptica/métodos , Simulación por Computador , Diseño de Equipo , Estudios de Factibilidad , Fantasmas de Imagen , Tomografía Óptica/instrumentación
16.
Biomed Opt Express ; 7(10): 4346-4363, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27867736

RESUMEN

Simulations and phantom measurements are used to evaluate the ability of time-domain diffuse optical tomography using Mellin-Laplace transforms to quantify the absorption perturbation of centimetric objects immersed at depth 1-2 cm in turbid media. We find that the estimated absorption coefficient varies almost linearly with the absorption change in the range of 0-0.15 cm-1 but is underestimated by a factor that depends on the inclusion depth (~2, 3 and 6 for depths of 1.0, 1.5 and 2.0 cm respectively). For larger absorption changes, the variation is sublinear with ~20% decrease for 뫵a = 0.37 cm-1. By contrast, constraining the absorption change to the actual volume of the inclusion may considerably improve the accuracy and linearity of the reconstructed absorption.

17.
J Biomed Opt ; 21(2): 25004, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26836208

RESUMEN

The noninvasive assessment of flap viability in autologous reconstruction surgery is still an unmet clinical need. To cope with this problem, we developed a proof-of-principle fully automatized setup for fast time-gated diffuse optical tomography exploiting Mellin-Laplace transform to obtain three-dimensional tomographic reconstructions of oxy- and deoxy-hemoglobin concentrations. We applied this method to perform preclinical tests on rats inducing total venous occlusion in the cutaneous abdominal flaps. Notwithstanding the use of just four source-detector couples, we could detect a spatially localized increase of deoxyhemoglobin following the occlusion (up to 550 µM in 54 min). Such capability to image spatio-temporal evolution of blood perfusion is a key issue for the noninvasive monitoring of flap viability.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Colgajos Quirúrgicos/fisiología , Tomografía Óptica/métodos , Animales , Femenino , Ratas , Ratas Wistar
18.
Biomed Opt Express ; 6(1): 1-10, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25657869

RESUMEN

Diffuse optical tomography for medical applications can require probes with small dimensions involving short source-detector separations. Even though this configuration is seen at first as a constraint due to the challenge of depth sensitivity, we show here that it can potentially be an asset for spatial resolution in depth. By comparing two fiber optic probes on a test object, we first show with simulations that short source-detector separations improve the spatial resolution down to a limit depth. We then confirm these results in an experimental study with a state-of-the-art setup involving a fast-gated single-photon avalanche diode allowing maximum depth sensitivity. We conclude that short source-detector separations are an option to consider for the design of probes so as to improve image quality for diffuse optical tomography in reflectance.

19.
Biomed Opt Express ; 6(5): 1749-60, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-26137377

RESUMEN

Light is a powerful tool to non-invasively probe highly scattering media for clinical applications ranging from oncology to neurology, but also for molecular imaging, and quality assessment of food, wood and pharmaceuticals. Here we show that, for a paradigmatic case of diffuse optical imaging, ideal yet realistic time-domain systems yield more than 2-fold higher depth penetration and many decades higher contrast as compared to ideal continuous-wave systems, by adopting a dense source-detector distribution with picosecond time-gating. Towards this aim, we demonstrate the first building block made of a source-detector pair directly embedded into the probe based on a pulsed Vertical-Cavity Surface-Emitting Laser (VCSEL) to allow parallelization for dense coverage, a Silicon Photomultiplier (SiPM) to maximize light harvesting, and a Single-Photon Avalanche Diode (SPAD) to demonstrate the time-gating capability on the basic SiPM element. This paves the way to a dramatic advancement in terms of increased performances, new high impact applications, and availability of devices with orders of magnitude reduction in size and cost for widespread use, including quantitative wearable imaging.

20.
Biomed Opt Express ; 4(8): 1351-65, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24009998

RESUMEN

We present the first experimental results of reflectance Diffuse Optical Tomography (DOT) performed with a fast-gated single-photon avalanche diode (SPAD) coupled to a time-correlated single-photon counting system. The Mellin-Laplace transform was employed to process time-resolved data. We compare the performances of the SPAD operated in the gated mode vs. the non-gated mode for the detection and localization of an absorbing inclusion deeply embedded in a turbid medium for 5 and 15 mm interfiber distances. We demonstrate that, for a given acquisition time, the gated mode enables the detection and better localization of deeper absorbing inclusions than the non-gated mode. These results obtained on phantoms demonstrate the efficacy of time-resolved DOT at small interfiber distances. By achieving depth sensitivity with limited acquisition times, the gated mode increases the relevance of reflectance DOT at small interfiber distance for clinical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA