Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Nature ; 580(7801): 76-80, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32238940

RESUMEN

Photoinduced electron transfer (PET) is a phenomenon whereby the absorption of light by a chemical species provides an energetic driving force for an electron-transfer reaction1-4. This mechanism is relevant in many areas of chemistry, including the study of natural and artificial photosynthesis, photovoltaics and photosensitive materials. In recent years, research in the area of photoredox catalysis has enabled the use of PET for the catalytic generation of both neutral and charged organic free-radical species. These technologies have enabled previously inaccessible chemical transformations and have been widely used in both academic and industrial settings. Such reactions are often catalysed by visible-light-absorbing organic molecules or transition-metal complexes of ruthenium, iridium, chromium or copper5,6. Although various closed-shell organic molecules have been shown to behave as competent electron-transfer catalysts in photoredox reactions, there are only limited reports of PET reactions involving neutral organic radicals as excited-state donors or acceptors. This is unsurprising because the lifetimes of doublet excited states of neutral organic radicals are typically several orders of magnitude shorter than the singlet lifetimes of known transition-metal photoredox catalysts7-11. Here we document the discovery, characterization and reactivity of a neutral acridine radical with a maximum excited-state oxidation potential of -3.36 volts versus a saturated calomel electrode, which is similarly reducing to elemental lithium, making this radical one of the most potent chemical reductants reported12. Spectroscopic, computational and chemical studies indicate that the formation of a twisted intramolecular charge-transfer species enables the population of higher-energy doublet excited states, leading to the observed potent photoreducing behaviour. We demonstrate that this catalytically generated PET catalyst facilitates several chemical reactions that typically require alkali metal reductants and can be used in other organic transformations that require dissolving metal reductants.

2.
J Chem Phys ; 161(7)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39158047

RESUMEN

Organic-inorganic hybrid perovskite quantum wells exhibit electronic structures with properties intermediate between those of inorganic semiconductors and molecular crystals. In these systems, periodic layers of organic spacer molecules occupy the interstitial spaces between perovskite sheets, thereby confining electronic excitations to two dimensions. Here, we investigate spectroscopic line broadening mechanisms for phonons coupled to excitons in lead-iodide layered perovskites with phenyl ethyl ammonium (PEA) and azobenzene ethyl ammonium (AzoEA) spacer cations. Using a modified Elliot line shape analysis for the absorbance and photoluminescence spectra, polaron binding energies of 11.2 and 17.5 meV are calculated for (PEA)2PbI4 and (AzoEA)2PbI4, respectively. To determine whether the polaron stabilization processes influence the dephasing mechanisms of coupled phonons, five-pulse coherent Raman spectroscopies are applied to the two systems under electronically resonant conditions. The prominence of inhomogeneous line broadening mechanisms detected in (AzoEA)2PbI4 suggests that thermal fluctuations involving the deformable organic phase broaden the distributions of phonon frequencies within the quantum wells. In addition, our data indicate that polaron stabilization primarily involves photoinduced reorganization of the organic phases for both systems, whereas the impulsively excited phonons represent less than 10% of the total polaron binding energy. The signal generation mechanisms associated with our fifth-order coherent Raman experiments are explored with a perturbative model in which cumulant expansions are used to account for time-coincident vibrational dephasing and polaron stabilization processes.

3.
J Chem Phys ; 159(9)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37668248

RESUMEN

Conventional time-of-flight methods can be used to determine carrier mobilities for photovoltaic cells in which the transit time between electrodes is greater than the RC time constant of the device. To measure carrier drift on sub-ns timescales, we have recently developed a two-pulse time-of-flight technique capable of detecting drift velocities with 100-ps time resolution in perovskite materials. In this method, the rates of carrier transit across the active layer of a device are determined by varying the delay time between laser pulses and measuring the magnitude of the recombination-induced nonlinearity in the photocurrent. Here, we present a related experimental approach in which diffractive optic-based transient grating spectroscopy is combined with our two-pulse time-of-flight technique to simultaneously probe drift and diffusion in orthogonal directions within the active layer of a photovoltaic cell. Carrier density gratings are generated using two time-coincident pulse-pairs with passively stabilized phases. Relaxation of the grating amplitude associated with the first pulse-pair is detected by varying the delay and phase of the density grating corresponding to the second pulse-pair. The ability of the technique to reveal carrier diffusion is demonstrated with model calculations and experiments conducted using MAPbI3 photovoltaic cells.

4.
J Chem Phys ; 157(17): 174202, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36347708

RESUMEN

Conventional time-of-flight (TOF) measurements yield charge carrier mobilities in photovoltaic cells with time resolution limited by the RC time constant of the device, which is on the order of 0.1-1 µs for the systems targeted in the present work. We have recently developed an alternate TOF method, termed nonlinear photocurrent spectroscopy (NLPC), in which carrier drift velocities are determined with picosecond time resolution by applying a pair of laser pulses to a device with an experimentally controlled delay time. In this technique, carriers photoexcited by the first laser pulse are "probed" by way of recombination processes involving carriers associated with the second laser pulse. Here, we report NLPC measurements conducted with a simplified experimental apparatus in which synchronized 40 ps diode lasers enable delay times up to 100 µs at 5 kHz repetition rates. Carrier mobilities of ∼0.025 cm2/V/s are determined for MAPbI3 photovoltaic cells with active layer thicknesses of 240 and 460 nm using this instrument. Our experiments and model calculations suggest that the nonlinear response of the photocurrent weakens as the carrier densities photoexcited by the first laser pulse trap and broaden while traversing the active layer of a device. Based on this aspect of the signal generation mechanism, experiments conducted with co-propagating and counter-propagating laser beam geometries are leveraged to determine a 60 nm length scale of drift velocity dispersion in MAPbI3 films. Contributions from localized states induced by thermal fluctuations are consistent with drift velocity dispersion on this length scale.

5.
J Chem Phys ; 156(8): 084202, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35232212

RESUMEN

Mixtures of layered perovskite quantum wells with different sizes form prototypical light-harvesting antenna structures in solution-processed films. Gradients in the bandgaps and energy levels are established by concentrating the smallest and largest quantum wells near opposing electrodes in photovoltaic devices. Whereas short-range energy and charge carrier funneling behaviors have been observed in layered perovskites, our recent work suggests that such light-harvesting processes do not assist long-range charge transport due to carrier trapping at interfaces between quantum wells and interstitial organic spacer molecules. Here, we apply a two-pulse time-of-flight technique to a family of layered perovskite systems to explore the effects that interstitial organic molecules have on charge carrier dynamics. In these experiments, the first laser pulse initiates carrier drift within the active layer of a photovoltaic device, whereas the second pulse probes the transient concentrations of photoexcited carriers as they approach the electrodes. The instantaneous drift velocities determined with this method suggest that the rates of trap-induced carrier deceleration increase with the concentrations of organic spacer cations. Overall, our experimental results and model calculations suggest that the layered perovskite device efficiencies primarily reflect the dynamics of carrier trapping at interfaces between quantum wells and interstitial organic phases.

6.
J Chem Phys ; 157(24): 244703, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36586990

RESUMEN

A kinetic framework for the ultrafast photophysics of tris(2,2-bipyridine)ruthenium(II) phosphonated and methyl-phosphonated derivatives is used as a basis for modeling charge injection by ruthenium dyes into a semiconductor substrate. By including the effects of light scattering, dye diffusion, and adsorption kinetics during sample preparation and the optical response of oxidized dyes, quantitative agreement with multiple transient absorption datasets is achieved on timescales spanning femtoseconds to nanoseconds. In particular, quantitative agreement with important spectroscopic handles-the decay of an excited state absorption signal component associated with charge injection in the UV region of the spectrum and the dynamical redshift of a ∼500 nm isosbestic point-validates our kinetic model. Pseudo-first-order rate coefficients for charge injection are estimated in this work, with an order of magnitude ranging from 1011 to 1012 s-1. The model makes the minimalist assumption that all excited states of a particular dye have the same charge injection coefficient, an assumption that would benefit from additional theoretical and experimental exploration. We have adapted this kinetic model to predict charge injection under continuous solar irradiation and find that as many as 68 electron transfer events per dye per second take place, significantly more than prior estimates in the literature.

7.
Proc Natl Acad Sci U S A ; 116(33): 16198-16203, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31366631

RESUMEN

The direction of electron flow in molecular optoelectronic devices is dictated by charge transfer between a molecular excited state and an underlying conductor or semiconductor. For those devices, controlling the direction and reversibility of electron flow is a major challenge. We describe here a single-molecule photodiode. It is based on an internally conjugated, bichromophoric dyad with chemically linked (porphyrinato)zinc(II) and bis(terpyridyl)ruthenium(II) groups. On nanocrystalline, degenerately doped indium tin oxide electrodes, the dyad exhibits distinct frequency-dependent, charge-transfer characters. Variations in the light source between red-light (∼1.9 eV) and blue-light (∼2.7 eV) excitation for the integrated photodiode result in switching of photocurrents between cathodic and anodic. The origin of the excitation frequency-dependent photocurrents lies in the electronic structure of the chromophore excited states, as shown by the results of theoretical calculations, laser flash photolysis, and steady-state spectrophotometric measurements.

8.
J Chem Phys ; 154(22): 220901, 2021 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-34241190

RESUMEN

Experimental methods based on a wide range of physical principles are used to determine carrier mobilities for light-harvesting materials in photovoltaic cells. For example, in a time-of-flight experiment, a single laser pulse photoexcites the active layer of a device, and the transit time is determined by the arrival of carriers at an acceptor electrode. With inspiration from this conventional approach, we present a multidimensional time-of-flight technique in which carrier transport is tracked with a second intervening laser pulse. Transient populations of separate material components of an active layer may then be established by tuning the wavelengths of the laser pulses into their respective electronic resonances. This experimental technique is demonstrated using photovoltaic cells based on mixtures of organohalide perovskite quantum wells. In these "layered perovskite" systems, charge carriers are funneled between quantum wells with different thicknesses because of staggered band alignments. Multidimensional time-of-flight measurements show that these funneling processes do not support long-range transport because of carrier trapping. Rather, our data suggest that the photocurrent is dominated by processes in which the phases of the thickest quantum wells absorb light and transport carriers without transitions into domains occupied by quantum wells with smaller sizes. These same conclusions cannot be drawn using conventional one-dimensional techniques for measuring carrier mobilities. Advantages and disadvantages of multidimensional time-of-flight experiments are discussed in the context of a model for the signal generation mechanism.

9.
J Chem Phys ; 153(13): 134202, 2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-33032398

RESUMEN

Interest in layered organohalide perovskites is motivated by their potential for use in optoelectronic devices. In these systems, the smallest and largest quantum wells are primarily concentrated near the glass and air interfaces of a film, thereby establishing a gradient in the average values of the bandgaps. It has been suggested that this layered architecture promotes the funneling of electronic excitations through space in a manner similar to light-harvesting processes in photosynthetic antennae. Whereas energy and charge transfer are difficult to distinguish by conventional transient absorption techniques, it has recently been shown that these competing relaxation mechanisms may be separately targeted with nonlinear fluorescence (NLFL) and photocurrent "action spectroscopies." Here, we present perturbative rate functions to describe NLFL experiments conducted on layered perovskite systems. The formulas reproduce the patterns of resonances observed in experimental measurements and show how signatures of energy transfer manifest in two-dimensional spectra. Overall, this work suggests that NLFL spectroscopy may be used to fully reveal the trajectories of electronic excitations by correlating ultrafast energy transfer pathways to fluorescence emission from the thickest quantum wells.

10.
J Phys Chem A ; 123(51): 11012-11021, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31730355

RESUMEN

Two-dimensional (2D) hybrid perovskites are generating broad scientific interest because of their potential for use in photovoltaics and microcavity lasers. It has recently been demonstrated that mixtures of quantum wells with different thicknesses can be assembled in films with heterogeneous quantum well distributions. Large (small) quantum wells are concentrated at the air side (substrate side) of the films, thereby promoting directional energy and/or electron transfer. However, profiles of the quantum well concentrations have not been directly measured throughout the full thicknesses of the films. Similarly, the lateral motions of the excitations in these systems are not well-characterized. In this work, we perform focused ion beam milling tests to establish quantum well concentrations as a function of depth in layered 2D perovskite films. In addition, transient absorption microscopy is used to investigate carrier diffusion and two-body recombination processes. Comparisons of the layered films with phase-pure single crystals reveal that diffusion is suppressed by grain boundaries in the films, which in turn promotes two-body recombination. Similar behaviors were previously observed in bulk perovskite films and single crystals. These studies suggest that the morphology of the film, rather than the identity of the material, is the primary factor that governs the two-body recombination dynamics. Enhancement of the two-body recombination processes is desirable for applications such as microcavity lasers.

11.
J Chem Phys ; 151(10): 104203, 2019 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-31521086

RESUMEN

Two-dimensional resonance Raman (2DRR) spectroscopies have been used to investigate the structural heterogeneity of ensembles and chemical reaction mechanisms in recent years. Our previous work suggests that the intensities of artifacts may be comparable to the desired 2DRR response for some chemical systems and experimental approaches. In a type of artifact known as a "cascade," the four-wave mixing signal field radiated by one molecule induces a four-wave mixing process in a second molecule. We consider the susceptibility of 2DRR spectroscopy to various types of signal cascades in the present work. Calculations are conducted using empirical parameters obtained for a molecule with an intramolecular charge-transfer transition in acetonitrile. For a fully impulsive pulse sequence, it is shown that "parallel" cascades involving two solute molecules are generally more intense than that of the desired 2DRR response when the solute's mode displacements are 1.0 or less. In addition, we find that the magnitudes of parallel cascades involving both solute and solvent molecules (i.e., a solute-solvent cascade) may exceed that of the 2DRR response when the solute possesses small mode displacements. It is tempting to assume that solute-solvent cascades possess negligible intensities because the off-resonant Raman cross sections of solvents are usually 4-6 orders of magnitude smaller than that of the electronically resonant solute; however, the present calculations show that the difference in solute and solvent concentrations can fully compensate for the difference in Raman cross sections under common experimental conditions. Implications for control experiments and alternate approaches for 2DRR spectroscopy are discussed.

12.
J Chem Phys ; 148(13): 134706, 2018 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-29626878

RESUMEN

Two-dimensional (2D) perovskite quantum wells are generating broad scientific interest because of their potential for use in optoelectronic devices. Recently, it has been shown that layers of 2D perovskites can be grown in which the average thicknesses of the quantum wells increase from the back to the front of the film. This geometry carries implications for light harvesting applications because the bandgap of a quantum well decreases as its thickness increases. The general structural formula for the 2D perovskite systems under investigation in this work is (PEA)2(MA)n-1[PbnI3n+1] (PEA = phenethyl ammonium, MA = methyl ammonium). Here, we examine two layered 2D perovskites with different distributions of quantum well thicknesses. Spectroscopic measurements and model calculations suggest that both systems funnel electronic excitations from the back to the front of the film through energy transfer mechanisms on the time scales of 100's of ps (i.e., energy transfer from thinner to thicker quantum wells). In addition, the model calculations demonstrate that the transient absorption spectra are composed of a progression of single exciton and biexciton resonances associated with the individual quantum wells. We find that exciton dissociation and/or charge transport dynamics make only minor contributions to the transient absorption spectra within the first 1 ns after photo-excitation. An analysis of the energy transfer kinetics indicates that the transitions occur primarily between quantum wells with values of n that differ by 1 because of the spectral overlap factor that governs the energy transfer rate. Two-dimensional transient absorption spectra reveal a pattern of resonances consistent with the dominance of sequential energy transfer dynamics.

13.
Nano Lett ; 16(1): 74-9, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26651872

RESUMEN

The electronic structure of 2D semiconductors depends on their thickness, providing new opportunities to engineer semiconductors for energy conversion, electronics, and catalysis. Here we show how a 3D semiconductor, black phosphorus, becomes active for solar-to-chemical energy conversion when it is thinned to a 2D material. The increase in its band gap, from 0.3 eV (3D) to 2.1 eV (2D monolayer), is accompanied by a 40-fold enhancement in the formation of chemical products. Despite this enhancement, smaller flakes also have shorter excited state lifetimes. We deduce a mechanism in which recombination occurs at flake edges, while the "van der Waals" surface of black phosphorus bonds to chemical intermediates and facilitates electron transfer. The unique properties of black phosphorus highlight its potential as a customizable material for solar energy conversion and catalysis, while also allowing us to identify design rules for 2D photocatalysts that will enable further improvements in these materials.

14.
J Phys Chem A ; 120(29): 5773-90, 2016 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-27362388

RESUMEN

The prevalence of ultrafast electron-transfer processes in light-harvesting materials has motivated a deeper understanding of coherent reaction mechanisms. Kinetic models based on the traditional (equilibrium) form of Fermi's Golden Rule are commonly employed to understand photoinduced electron-transfer dynamics. These models fail in two ways when the electron-transfer process is fast compared to solvation dynamics and vibrational dephasing. First, electron-transfer dynamics may be accelerated if the photoexcited wavepacket traverses the point of degeneracy between donor and acceptor states in the solvent coordinate. Second, traditional kinetic models fail to describe electron-transfer transitions that yield products which undergo coherent nuclear motions. We address the second point in this work. Transient absorption spectroscopy and a numerical model are used to investigate coherent back-electron-transfer mechanisms in a transition metal complex composed of titanium and catechol, [Ti(cat)3](2-). The transient absorption experiments reveal coherent wavepacket motions initiated by the back-electron-transfer process. Model calculations suggest that the vibrationally coherent product states may originate in either vibrational populations or coherences of the reactant. That is, vibrational coherence may be produced even if the reactant does not undergo coherent nuclear motions. The analysis raises a question of broader significance: can a vibrational population-to-coherence transition (i.e., a nonsecular transition) accelerate electron-transfer reactions even when the rate is slower than vibrational dephasing?

15.
J Chem Phys ; 145(3): 034203, 2016 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-27448880

RESUMEN

Two-dimensional resonance Raman (2DRR) spectroscopy has recently been developed as a tool for studies of structural heterogeneity and photochemical dynamics in condensed phases. In this paper, 2DRR spectroscopy is used to investigate line broadening mechanisms of both oxygen- and water-ligated myoglobins. General signatures of anharmonicity and inhomogeneous line broadening are first established with model calculations to facilitate signal interpretation. It is shown that the present quasi-degenerate version of 2DRR spectroscopy is insensitive to anharmonicity, because signal generation is allowed for harmonic modes. Rather, the key information to be gained from 2DRR spectroscopy pertains to the line broadening mechanisms, which are fairly obvious by inspection of the data. 2DRR signals acquired for both heme protein systems reveal significant heterogeneity in the vibrational modes local to the heme's propionic acid side chains. These side chains are known to interact with solvent, because they protrude from the hydrophobic pocket that encloses the heme. Molecular dynamics simulations suggest that the heterogeneity detected in our 2DRR experiments reflects fluctuations in the geometries of the side chains. Knowledge of such thermal motions will be useful for understanding protein function (e.g., ligand binding) because the side chains are an effective "gateway" for the exchange of thermal energy between the heme and solvent.


Asunto(s)
Mioglobina/química , Oxígeno/química , Espectrometría Raman/métodos , Agua/química , Algoritmos , Animales , Caballos , Interacciones Hidrofóbicas e Hidrofílicas , Simulación de Dinámica Molecular , Estructura Molecular , Músculo Esquelético/química , Protoporfirinas/química , Temperatura
16.
J Chem Phys ; 145(18): 180901, 2016 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-27846686

RESUMEN

Two-dimensional resonance Raman (2DRR) spectroscopy has been developed for studies of photochemical reaction mechanisms and structural heterogeneity in complex systems. The 2DRR method can leverage electronic resonance enhancement to selectively probe chromophores embedded in complex environments (e.g., a cofactor in a protein). In addition, correlations between the two dimensions of the 2DRR spectrum reveal information that is not available in traditional Raman techniques. For example, distributions of reactant and product geometries can be correlated in systems that undergo chemical reactions on the femtosecond time scale. Structural heterogeneity in an ensemble may also be reflected in the 2D spectroscopic line shapes of both reactive and non-reactive systems. In this perspective article, these capabilities of 2DRR spectroscopy are discussed in the context of recent applications to the photodissociation reactions of triiodide and myoglobin. We also address key differences between the signal generation mechanisms for 2DRR and off-resonant 2D Raman spectroscopies. Most notably, it has been shown that these two techniques are subject to a tradeoff between sensitivity to anharmonicity and susceptibility to artifacts. Overall, recent experimental developments and applications of the 2DRR method suggest great potential for the future of the technique.


Asunto(s)
Procesos Fotoquímicos , Espectrometría Raman , Yoduros/química , Mioglobina/química , Oxígeno/química , Vibración , Agua/química
17.
J Chem Phys ; 145(10): 101101, 2016 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-27634244

RESUMEN

Analogues of 2D photon echo methods in which two population times are sampled have recently been used to expose heterogeneity in chemical kinetics. In this work, the two population times sampled for a transition metal complex are transformed into a 2D rate spectrum using the maximum entropy method. The 2D rate spectrum suggests heterogeneity in the vibrational cooling (VC) rate within the ensemble. In addition, a cross peak associated with VC and back electron transfer (BET) dynamics reveals correlation between the two processes. We hypothesize that an increase in the strength of solute-solvent interactions, which accelerates VC, drives the system toward the activationless regime of BET.

18.
J Am Chem Soc ; 137(9): 3372-8, 2015 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-25697508

RESUMEN

Medical hydrogel applications have expanded rapidly over the past decade. Implantation in patients by noninvasive injection is preferred, but this requires hydrogel solidification from a low viscosity solution to occur in vivo via an applied stimuli. Transdermal photo-cross-linking of acrylated biopolymers with photoinitiators and lights offers a mild, spatiotemporally controlled solidification trigger. However, the current short wavelength initiators limit curing depth and efficacy because they do not absorb within the optical window of tissue (600-900 nm). As a solution to the current wavelength limitations, we report the development of a red light responsive initiator capable of polymerizing a range of acrylated monomers. Photoactivation occurs within a range of skin type models containing high biochromophore concentrations.


Asunto(s)
Hidrogeles/química , Ensayo de Materiales/métodos , Fotoquímica/métodos , Vitamina B 12/química , Acrilatos/química , Supervivencia Celular , Células Hep G2 , Humanos , Luz , Melaninas/química , Fotólisis , Polietilenglicoles/química , Polimerizacion , Propano/análogos & derivados , Propano/química , Piel
19.
J Chem Phys ; 142(21): 212405, 2015 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-26049425

RESUMEN

Femtosecond Stimulated Raman Spectroscopy (FSRS) is motivated by the knowledge of the molecular geometry changes that accompany sub-picosecond chemical reactions. The detection of vibrational resonances throughout the entire fingerprint region of the spectrum with sub-100-fs delay precision is fairly straightforward to accomplish with the FSRS technique. Despite its utility, FSRS must contend with substantial technical challenges that stem from a large background of residual laser light and lower-order nonlinearities when all laser pulses are electronically resonant with the equilibrium system. In this work, a geometry based on five incident laser beams is used to eliminate much of this undesired background in experiments conducted on metmyoglobin. Compared to a three-beam FSRS geometry with all electronically resonant laser pulses, the five-beam approach described here offers major improvements in the data acquisition rate, sensitivity, and background suppression. The susceptibility of the five-beam geometry to experimental artifacts is investigated using control experiments and model calculations. Of particular concern are undesired cascades of third-order nonlinearities, which are known to challenge FSRS measurements carried out on electronically off-resonant systems. It is generally understood that "forbidden" steps in the desired nonlinear optical processes are the origin of the problems encountered under off-resonant conditions. In contrast, the present experiments are carried out under electronically resonant conditions, where such unfortunate selection rules do not apply. Nonetheless, control experiments based on spectroscopic line shapes, signal phases, and sample concentrations are conducted to rule out significant contributions from cascades of third-order processes. Theoretical calculations are further used to estimate the relative intensities of the direct and cascaded responses. Overall, the control experiments and model calculations presented in this work suggest promise for multidimensional resonance Raman investigations of heme proteins.

20.
J Chem Phys ; 143(12): 124202, 2015 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-26429002

RESUMEN

Traditional second-order kinetic theories fail to describe sub-picosecond photochemical reactions when solvation and vibrational dephasing undermine the assumption of equilibrium initial conditions. Four-wave mixing spectroscopies may reveal insights into such non-equilibrium processes but are limited by the single "population time" available in these types of experiments. Here, we use two-dimensional resonance Raman (2DRR) spectroscopy to expose correlations between coherent nuclear motions of the reactant and product in the photodissociation reaction of triiodide. It is shown that the transition of a nuclear wavepacket from the reactant (triiodide) to product (diiodide) states gives rise to a unique pattern of 2DRR resonances. Peaks associated with this coherent reaction mechanism are readily assigned, because they are isolated in particular quadrants of the 2DRR spectrum. A theoretical model in which the chemical reaction is treated as a vibronic coherence transfer transition from triiodide to diiodide reproduces the patterns of 2DRR resonances detected in experiments. These signal components reveal correlation between the nonequilibrium geometry of triiodide and the vibrational coherence frequency of diiodide. The 2DRR signatures of coherent reaction mechanisms established in this work may generalize to studies of ultrafast energy and charge transfer processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA