Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cell Mol Life Sci ; 79(9): 504, 2022 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-36056964

RESUMEN

BACKGROUND: RAS-to-ERK signaling is crucial for the onset and progression of advanced thyroid carcinoma, and blocking ERK dimerization provides a therapeutic benefit in several human carcinomas. Here we analyzed the effects of DEL-22379, a relatively specific ERK dimerization inhibitor, on the activation of the RAS-to-ERK signaling cascade and on tumor-related processes in vitro and in vivo. METHODS: We used a panel of four human anaplastic thyroid carcinoma (ATC) cell lines harboring BRAF or RAS mutations to analyze ERK dynamics and tumor-specific characteristics. We also assessed the impact of DEL-22379 on the transcriptional landscape of ATC cell lines using RNA-sequencing and evaluated its therapeutic efficacy in an orthotopic mouse model of ATC. RESULTS: DEL-22379 impaired upstream ERK activation in BRAF- but not RAS-mutant cells. Cell viability and metastasis-related processes were attenuated by DEL-22379 treatment, but mostly in BRAF-mutant cells, whereas in vivo tumor growth and dissemination were strongly reduced for BRAF-mutant cells and mildly reduced for RAS-mutant cells. Transcriptomics analyses indicated that DEL-22379 modulated the transcriptional landscape of BRAF- and RAS-mutant cells in opposite directions. CONCLUSIONS: Our findings establish that BRAF- and RAS-mutant thyroid cells respond differentially to DEL-22379, which cannot be explained by the previously described mechanism of action of the inhibitor. Nonetheless, DEL-22379 demonstrated significant anti-tumor effects against BRAF-mutant cells in vivo with an apparent lack of toxicity, making it an interesting candidate for the development of combinatorial treatments. Our data underscore the differences elicited by the specific driver mutation for thyroid cancer onset and progression, which should be considered for experimental and clinical approaches.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Carcinoma Anaplásico de Tiroides , Neoplasias de la Tiroides , Animales , Línea Celular Tumoral , Dimerización , Humanos , Ratones , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Multimerización de Proteína , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Carcinoma Anaplásico de Tiroides/tratamiento farmacológico , Carcinoma Anaplásico de Tiroides/genética , Neoplasias de la Tiroides/tratamiento farmacológico , Neoplasias de la Tiroides/genética
2.
Sci Signal ; 16(794): eadg4193, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37463244

RESUMEN

The transcription factor MYC regulates cell proliferation, transformation, and survival in response to growth factor signaling that is mediated in part by the kinase activity of ERK2. Because ERK2 can also bind to DNA to modify gene expression, we investigated whether it more directly regulates MYC transcription. We identified ERK2 binding sites in the MYC promoter and detected ERK2 at the promoter in various serum-stimulated cell types. Expression of nuclear-localized ERK2 constructs in serum-starved cells revealed that ERK2 in the nucleus-regardless of its kinase activity-increased MYC mRNA expression and MYC protein abundance. ERK2 bound to the promoter through its amino-terminal insert domain and to the cyclin-dependent kinase CDK9 (which activates RNA polymerase II) through its carboxyl-terminal conserved docking domain. Both interactions were essential for ERK2-induced MYC expression, and depleting ERK impaired CDK9 occupancy and RNA polymerase II progression at the MYC promoter. Artificially tethering CDK9 to the MYC promoter by fusing it to the ERK2 insert domain was sufficient to stimulate MYC expression in serum-starved cells. Our findings demonstrate a role for ERK2 at the MYC promoter acting as a kinase-independent anchor for the recruitment of CDK9 to promote MYC expression.


Asunto(s)
ARN Polimerasa II , Factores de Transcripción , ARN Polimerasa II/genética , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , Fosforilación , Factores de Transcripción/metabolismo , Quinasas Ciclina-Dependientes/genética , Regiones Promotoras Genéticas , Transcripción Genética
3.
Sci Adv ; 9(7): eadd7969, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36791195

RESUMEN

RAS-ERK (extracellular signal-regulated kinase) pathway signals are modulated by scaffold proteins that assemble the components of different kinase tiers into a sequential phosphorylation cascade. In the prevailing model scaffold proteins function as isolated entities, where the flux of phosphorylation events progresses downstream linearly, to achieve ERK phosphorylation. We show that different types of scaffold proteins, specifically KSR1 (kinase suppressor of Ras 1) and IQGAP1 (IQ motif-containing guanosine triphosphatase activating protein 1), can bind to each other, forming a complex whereby phosphorylation reactions occur across both species. MEK (mitogen-activated protein kinase kinase) bound to IQGAP1 can phosphorylate ERK docked at KSR1, a process that we have named "trans-phosphorylation." We also reveal that ERK trans-phosphorylation participates in KSR1-regulated adipogenesis, and it also underlies the modest cytotoxicity exhibited by KSR-directed inhibitors. Overall, we identify interactions between scaffold proteins and trans-phosphorylation as an additional level of regulation in the ERK cascade, with broad implications in signaling and the design of scaffold protein-aimed therapeutics.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular , Sistema de Señalización de MAP Quinasas , Fosforilación , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Transducción de Señal
4.
Biomolecules ; 12(11)2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36358912

RESUMEN

Metastatic melanoma is a highly immunogenic tumor with very poor survival rates due to immune system escape-mechanisms. Immune checkpoint inhibitors (ICIs) targeting the cytotoxic T-lymphocyte-associated protein 4 (CTLA4) and the programmed death-1 (PD1) receptors, are being used to impede immune evasion. This immunotherapy entails an increment in the overall survival rates. However, melanoma cells respond with evasive molecular mechanisms. ERK cascade inhibitors are also used in metastatic melanoma treatment, with the RAF activity blockade being the main therapeutic approach for such purpose, and in combination with MEK inhibitors improves many parameters of clinical efficacy. Despite their efficacy in inhibiting ERK signaling, the rewiring of the melanoma cell-signaling results in disease relapse, constituting the reinstatement of ERK activation, which is a common cause of some resistance mechanisms. Recent studies revealed that the combination of RAS-ERK pathway inhibitors and ICI therapy present promising advantages for metastatic melanoma treatment. Here, we present a recompilation of the combined therapies clinically evaluated in patients.


Asunto(s)
Antineoplásicos , Melanoma , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Sistema de Señalización de MAP Quinasas , Melanoma/patología , Inmunoterapia/métodos , Antineoplásicos/farmacología
5.
Endocr Relat Cancer ; 26(6): R319-R344, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30978703

RESUMEN

Thyroid cancer is mostly an ERK-driven carcinoma, as up to 70% of thyroid carcinomas are caused by mutations that activate the RAS/ERK mitogenic signaling pathway. The incidence of thyroid cancer has been steadily increasing for the last four decades; yet, there is still no effective treatment for advanced thyroid carcinomas. Current research efforts are focused on impairing ERK signaling with small-molecule inhibitors, mainly at the level of BRAF and MEK. However, despite initial promising results in animal models, the clinical success of these inhibitors has been limited by the emergence of tumor resistance and relapse. The RAS/ERK pathway is an extremely complex signaling cascade with multiple points of control, offering many potential therapeutic targets: from the modulatory proteins regulating the activation state of RAS proteins to the scaffolding proteins of the pathway that provide spatial specificity to the signals, and finally, the negative feedbacks and phosphatases responsible for inactivating the pathway. The aim of this review is to give an overview of the biology of RAS/ERK regulators in human cancer highlighting relevant information on thyroid cancer and future areas of research.


Asunto(s)
Antineoplásicos/uso terapéutico , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Terapia Molecular Dirigida , Neoplasias de la Tiroides/tratamiento farmacológico , Proteínas ras/antagonistas & inhibidores , Animales , Humanos , Neoplasias de la Tiroides/metabolismo , Neoplasias de la Tiroides/patología
6.
Cancer Res ; 73(20): 6264-76, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23950209

RESUMEN

Metastatic melanoma remains a mostly incurable disease. Although newly approved targeted therapies are efficacious in a subset of patients, resistance and relapse rapidly ensue. Alternative therapeutic strategies to manipulate epigenetic regulators and disrupt the transcriptional program that maintains tumor cell identity are emerging. Bromodomain and extraterminal domain (BET) proteins are epigenome readers known to exert key roles at the interface between chromatin remodeling and transcriptional regulation. Here, we report that BRD4, a BET family member, is significantly upregulated in primary and metastatic melanoma tissues compared with melanocytes and nevi. Treatment with BET inhibitors impaired melanoma cell proliferation in vitro and tumor growth and metastatic behavior in vivo, effects that were mostly recapitulated by individual silencing of BRD4. RNA sequencing of BET inhibitor-treated cells followed by Gene Ontology analysis showed a striking impact on transcriptional programs controlling cell growth, proliferation, cell-cycle regulation, and differentiation. In particular, we found that, rapidly after BET displacement, key cell-cycle genes (SKP2, ERK1, and c-MYC) were downregulated concomitantly with the accumulation of cyclin-dependent kinase (CDK) inhibitors (p21 and p27), followed by cell-cycle arrest. Importantly, BET inhibitor efficacy was not influenced by BRAF or NRAS mutational status, opening the possibility of using these small-molecule compounds to treat patients for whom no effective targeted therapy exists. Collectively, our study reveals a critical role for BRD4 in melanoma tumor maintenance and renders it a legitimate and novel target for epigenetic therapy directed against the core transcriptional program of melanoma.


Asunto(s)
Melanoma/metabolismo , Melanoma/patología , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas de Ciclo Celular , Diferenciación Celular/fisiología , Procesos de Crecimiento Celular/fisiología , Línea Celular Tumoral , Epigenómica , Xenoinjertos , Humanos , Inmunohistoquímica , Melanoma/genética , Ratones , Ratones Endogámicos NOD , Ratones SCID , Proteínas Nucleares/biosíntesis , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinasas/biosíntesis , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína , ARN Mensajero/genética , ARN Mensajero/metabolismo , Distribución Aleatoria , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA