Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Arch Toxicol ; 95(10): 3341-3359, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34313809

RESUMEN

Aging and smoking are major risk factors for cardiovascular diseases (CVD). Our in vitro study compared, in the context of aging, the effects of the aerosol of Tobacco Heating System 2.2 (THS; an electrically heated tobacco product) and 3R4F reference cigarette smoke (CS) on processes that contribute to vascular pathomechanisms leading to CVD. Young and old human aortic smooth muscle cells (HAoSMC) were exposed to various concentrations of aqueous extracts (AE) from 3R4F CS [0.014-0.22 puffs/mL] or THS aerosol [0.11-1.76 puffs/mL] for 24 h. Key markers were measured by high-content imaging, transcriptomics profiling and multianalyte profiling. In our study, in vitro aging increased senescence, DNA damage, and inflammation and decreased proliferation in the HAoSMCs. At higher concentrations of 3R4F AE, young HAoSMCs behaved similarly to aged cells, while old HAoSMCs showed additional DNA damage and apoptosis effects. At 3R4F AE concentrations with the maximum effect, the THS AE showed no significant effect in young or old HAoSMCs. It required an approximately ten-fold higher concentration of THS AE to induce effects similar to those observed with 3R4F. These effects were independent of nicotine, which did not show a significant effect on HAoSMCs at any tested concentration. Our results show that 3R4F AE accelerates aging in young HAoSMCs and exacerbates the aging effect in old HAoSMCs in vitro, consistent with CS-related contributions to the risk of CVD. Relative to 3R4F AE, the THS AE showed a significantly reduced impact on HAoSMCs, suggesting its lower risk for vascular SMC-associated pathomechanisms leading to CVD.


Asunto(s)
Envejecimiento Prematuro/etiología , Miocitos del Músculo Liso/efectos de los fármacos , Nicotiana/efectos adversos , Humo/efectos adversos , Aerosoles , Aorta/citología , Aorta/efectos de los fármacos , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Senescencia Celular , Daño del ADN/efectos de los fármacos , Humanos , Inflamación/etiología , Miocitos del Músculo Liso/patología , Fumar/efectos adversos , Productos de Tabaco
2.
Sci Rep ; 14(1): 5797, 2024 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461178

RESUMEN

Enterotoxins are a type of toxins that primarily affect the intestines. Understanding their harmful effects is essential for food safety and medical research. Current methods lack high-throughput, robust, and translatable models capable of characterizing toxin-specific epithelial damage. Pressing concerns regarding enterotoxin contamination of foods and emerging interest in clinical applications of enterotoxins emphasize the need for new platforms. Here, we demonstrate how Caco-2 tubules can be used to study the effect of enterotoxins on the human intestinal epithelium, reflecting toxins' distinct pathogenic mechanisms. After exposure of the model to toxins nigericin, ochratoxin A, patulin and melittin, we observed dose-dependent reductions in barrier permeability as measured by TEER, which were detected with higher sensitivity than previous studies using conventional models. Combination of LDH release assays and DRAQ7 staining allowed comprehensive evaluation of toxin cytotoxicity, which was only observed after exposure to melittin and ochratoxin A. Furthermore, the study of actin cytoskeleton allowed to assess toxin-induced changes in cell morphology, which were only caused by nigericin. Altogether, our study highlights the potential of our Caco-2 tubular model in becoming a multi-parametric and high-throughput tool to bridge the gap between current enterotoxin research and translatable in vivo models of the human intestinal epithelium.


Asunto(s)
Toxinas Bacterianas , Enterotoxinas , Humanos , Enterotoxinas/toxicidad , Toxinas Bacterianas/toxicidad , Células CACO-2 , Meliteno/farmacología , Nigericina/farmacología , Mucosa Intestinal/patología
3.
Biomedicines ; 11(2)2023 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-36831155

RESUMEN

The intestine contains the largest microbial community in the human body, the gut microbiome. Increasing evidence suggests that it plays a crucial role in maintaining overall health. However, while many studies have found a correlation between certain diseases and changes in the microbiome, the impact of different microbial compositions on the gut and the mechanisms by which they contribute to disease are not well understood. Traditional pre-clinical models, such as cell culture or animal models, are limited in their ability to mimic the complexity of human physiology. New mechanistic models, such as organ-on-a-chip, are being developed to address this issue. These models provide a more accurate representation of human physiology and could help bridge the gap between clinical and pre-clinical studies. Gut-on-chip models allow researchers to better understand the underlying mechanisms of disease and the effect of different microbial compositions on the gut. They can help to move the field from correlation to causation and accelerate the development of new treatments for diseases associated with changes in the gut microbiome. This review will discuss current and future perspectives of gut-on-chip models to study host-microbial interactions.

4.
FEMS Microbiol Rev ; 45(3)2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33232448

RESUMEN

Candida albicans is a major fungal pathogen of humans. It exists as a commensal in the oral cavity, gut or genital tract of most individuals, constrained by the local microbiota, epithelial barriers and immune defences. Their perturbation can lead to fungal outgrowth and the development of mucosal infections such as oropharyngeal or vulvovaginal candidiasis, and patients with compromised immunity are susceptible to life-threatening systemic infections. The importance of the interplay between fungus, host and microbiota in driving the transition from C. albicans commensalism to pathogenicity is widely appreciated. However, the complexity of these interactions, and the significant impact of fungal, host and microbiota variability upon disease severity and outcome, are less well understood. Therefore, we summarise the features of the fungus that promote infection, and how genetic variation between clinical isolates influences pathogenicity. We discuss antifungal immunity, how this differs between mucosae, and how individual variation influences a person's susceptibility to infection. Also, we describe factors that influence the composition of gut, oral and vaginal microbiotas, and how these affect fungal colonisation and antifungal immunity. We argue that a detailed understanding of these variables, which underlie fungal-host-microbiota interactions, will present opportunities for directed antifungal therapies that benefit vulnerable patients.


Asunto(s)
Candidiasis/inmunología , Candidiasis/microbiología , Interacciones Microbiota-Huesped/fisiología , Interacciones Microbianas/fisiología , Candida albicans/inmunología , Candida albicans/patogenicidad , Humanos
5.
SLAS Technol ; 25(3): 247-252, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31971054

RESUMEN

High-content imaging (HCI) is a powerful method for quantifying biological effects in vitro. Historically, HCI has been applied to adherent cells growing in monolayers. With the advent of confocal versions of HCI devices, researchers now have the option of performing analyses on 3D cell cultures. However, some obstacles remain in integrating the third dimension, such as limited light penetration and less sophisticated image analysis. Here, we report the development of an HCI technique for imaging human bronchial 3D organotypic air-liquid interface (ALI) cultures (hBR-ALI). In this method, we monitored differentiation status through HCI evaluation markers representative of ciliated epithelial cells and goblet cells (Muc5AC [mucin 5AC]). As a second use case for demonstrating the utility of this technique, we induced goblet cell hyperplasia in hBR-ALI by using interleukin (IL)-13. Our results demonstrate the utility of the HCI technique for imaging hBR-ALI grown on Transwell inserts. This technique may be expanded to other cell culture systems, such as skin epithelia and 3D intestinal systems.


Asunto(s)
Aire , Bronquios/citología , Técnicas de Cultivo de Célula/métodos , Imagenología Tridimensional , Humanos , Mucina 5AC/metabolismo , Fenotipo , Tubulina (Proteína)/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA