Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(W1): W461-W468, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38686808

RESUMEN

In drug discovery, the successful optimization of an initial hit compound into a lead molecule requires multiple cycles of chemical modification. Consequently, there is a need to efficiently generate synthesizable chemical libraries to navigate the chemical space surrounding the primary hit. To address this need, we introduce ChemoDOTS, an easy-to-use web server for hit-to-lead chemical optimization freely available at https://chemodots.marseille.inserm.fr/. With this tool, users enter an activated form of the initial hit molecule then choose from automatically detected reactive functions. The server proposes compatible chemical transformations via an ensemble of encoded chemical reactions widely used in the pharmaceutical industry during hit-to-lead optimization. After selection of the desired reactions, all compatible chemical building blocks are automatically coupled to the initial hit to generate a raw chemical library. Post-processing filters can be applied to extract a subset of compounds with specific physicochemical properties. Finally, explicit stereoisomers and tautomers are computed, and a 3D conformer is generated for each molecule. The resulting virtual library is compatible with most docking software for virtual screening campaigns. ChemoDOTS rapidly generates synthetically feasible, hit-focused, large, diverse chemical libraries with finely-tuned physicochemical properties via a user-friendly interface providing a powerful resource for researchers engaged in hit-to-lead optimization.


Asunto(s)
Descubrimiento de Drogas , Internet , Bibliotecas de Moléculas Pequeñas , Programas Informáticos , Bibliotecas de Moléculas Pequeñas/química , Descubrimiento de Drogas/métodos , Diseño de Fármacos
2.
Biophys J ; 122(21): 4135-4143, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37731243

RESUMEN

Lysophospholipids (lysoPLs) are crucial metabolites involved in various physiological and pathological cellular processes. Understanding their binding interactions, particularly with human serum albumin (HSA), is essential due to their role in regulating lysoPLs-induced cytotoxicity. However, the precise mechanism of lysoPLs binding to HSA remains elusive. In this study, we employed fluorescence quenching and optical interferometry assays to demonstrate direct binding between lysophosphatidylcholine (LPC) and HSA (KD = 25 µM). Furthermore, we determined crystal structures of HSA in complex with LPC, both in the absence and the presence of the endogenous fatty acid myristate (14:0). The crystal structure of binary HSA:LPC revealed that six LPC molecules are bound to HSA at the primary fatty acid binding sites. Interestingly, the ternary HSA:Myr:LPC structure demonstrated the continued binding of three LPC molecules to HSA at binding sites 1, 3, and 5 in the presence of myristate. These findings support HSA's role as a carrier protein for lysoPLs in blood plasma and provide valuable insights into the structural basis of their binding mechanisms.


Asunto(s)
Lisofosfatidilcolinas , Albúmina Sérica Humana , Humanos , Albúmina Sérica Humana/química , Albúmina Sérica Humana/metabolismo , Albúmina Sérica/química , Unión Proteica , Miristatos , Modelos Moleculares , Ácidos Grasos/metabolismo
3.
Biol Cell ; 113(6): 272-280, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33554340

RESUMEN

Cancer is a multi-step disease where an initial tumour progresses through critical steps shaping, in most cases, life-threatening secondary foci called metastases. The oncogenic cascade involves genetic, epigenetic, signalling pathways, intracellular trafficking and/or metabolic alterations within cancer cells. In addition, pre-malignant and malignant cells orchestrate complex and dynamic interactions with non-malignant cells and acellular matricial components or secreted factors within the tumour microenvironment that is instrumental in the progression of the disease. As our aptitude to effectively treat cancer mostly depends on our ability to decipher, properly diagnose and impede cancer progression and metastasis formation, full characterisation of molecular complexes and cellular processes at play along the metastasis cascade is crucial. For many years, the scientific community lacked adapted imaging and molecular technologies to accurately dissect, at the highest resolution possible, tumour and stromal cells behaviour within their natural microenvironment. In that context, the NANOTUMOR consortium is a French national multi-disciplinary workforce which aims at a providing a multi-scale characterisation of the oncogenic cascade, from the atomic level to the dynamic organisation of the cell in response to genetic mutations, environmental changes or epigenetic modifications. Ultimately, this program aims at identifying new therapeutic targets using innovative drug design.


Asunto(s)
Bases de Datos como Asunto , Neoplasias/patología , Humanos
4.
Biochem J ; 478(8): 1525-1545, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33787846

RESUMEN

The Nef protein of human and simian immunodeficiency viruses boosts viral pathogenicity through its interactions with host cell proteins. By combining the polyvalency of its large unstructured regions with the binding selectivity and strength of its folded core domain, Nef can associate with many different host cell proteins, thereby disrupting their functions. For example, the combination of a linear proline-rich motif and hydrophobic core domain surface allows Nef to bind tightly and specifically to SH3 domains of Src family kinases. We investigated whether the interplay between Nef's flexible regions and its core domain could allosterically influence ligand selection. We found that the flexible regions can associate with the core domain in different ways, producing distinct conformational states that alter the way in which Nef selects for SH3 domains and exposes some of its binding motifs. The ensuing crosstalk between ligands might promote functionally coherent Nef-bound protein ensembles by synergizing certain subsets of ligands while excluding others. We also combined proteomic and bioinformatics analyses to identify human proteins that select SH3 domains in the same way as Nef. We found that only 3% of clones from a whole-human fetal library displayed Nef-like SH3 selectivity. However, in most cases, this selectivity appears to be achieved by a canonical linear interaction rather than by a Nef-like 'tertiary' interaction. Our analysis supports the contention that Nef's mode of hijacking SH3 domains is a virus-specific adaptation with no or very few cellular counterparts. Thus, the Nef tertiary binding surface is a promising virus-specific drug target.


Asunto(s)
VIH-1/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo K/química , Proteínas Nucleares/química , Proteínas Proto-Oncogénicas c-fyn/química , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/química , Sitio Alostérico , Secuencia de Aminoácidos , Clonación Molecular , Biología Computacional/métodos , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Feto , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , VIH-1/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo K/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo K/metabolismo , Interacciones Huésped-Patógeno/genética , Humanos , Ligandos , Simulación de Dinámica Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-fyn/genética , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Termodinámica , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo
5.
J Environ Manage ; 302(Pt A): 114048, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34872181

RESUMEN

Low emission zones (LEZs) aiming at improving the air quality in urban areas have been implemented in many European cities. However, studies are limited in evaluating the effects of LEZ, and most of which used simple methods. In this study, a general additive mixed model was utilized to account for confounders in the atmosphere and validate the effects of LEZ on PM10 and NO2 concentrations in two German cities. In addition, the effects of LEZ on elemental carbon (EC) and total carbon (TC) in Berlin were also evaluated. The LEZ effects were estimated after taking into account air pollutant concentrations at a reference site located in the regional background, and adjusting for hour of the week, public holidays, season, and wind direction. The LEZ in Berlin, and the LEZ in combination with the heavy-duty vehicle (HDV) transit ban in Munich significantly reduced the PM10 concentrations, at both traffic sites (TS) and urban background sites (UB). The effects were greater in LEZ stage 3 than in LEZ stages 2 and 1. Moreover, compared with PM10, LEZ was more efficient in reducing EC, a component that is considered more toxic than PM10 mass. In contrast, the LEZ had no consistent effect on NO2 levels: no effects were observed in Berlin; in Munich, the combination of the LEZ and the HDV transit ban reduced NO2 at UB site in LEZ stage 1, but without further reductions in subsequent stages of the LEZ. Overall, our study indicated that LEZs, which target the major primary air pollution source in the highly populated city center could be an effective way to improve urban air quality such as PM mass concentration and EC level.


Asunto(s)
Contaminación del Aire , Emisiones de Vehículos , Contaminación del Aire/prevención & control , Berlin , Monitoreo del Ambiente , Alemania , Emisiones de Vehículos/análisis
6.
PLoS Genet ; 13(6): e1006803, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28617811

RESUMEN

Spermatogenesis is a dynamic process that is regulated by adhesive interactions between germ and Sertoli cells. Germ cells express the Junctional Adhesion Molecule-C (JAM-C, encoded by Jam3), which localizes to germ/Sertoli cell contacts. JAM-C is involved in germ cell polarity and acrosome formation. Using a proteomic approach, we demonstrated that JAM-C interacted with the Golgi reassembly stacking protein of 55 kDa (GRASP55, encoded by Gorasp2) in developing germ cells. Generation and study of Gorasp2-/- mice revealed that knock-out mice suffered from spermatogenesis defects. Acrosome formation and polarized localization of JAM-C in spermatids were altered in Gorasp2-/- mice. In addition, Golgi morphology of spermatocytes was disturbed in Gorasp2-/- mice. Crystal structures of GRASP55 in complex with JAM-C or JAM-B revealed that GRASP55 interacted via PDZ-mediated interactions with JAMs and induced a conformational change in GRASP55 with respect of its free conformation. An in silico pharmacophore approach identified a chemical compound called Graspin that inhibited PDZ-mediated interactions of GRASP55 with JAMs. Treatment of mice with Graspin hampered the polarized localization of JAM-C in spermatids, induced the premature release of spermatids and affected the Golgi morphology of meiotic spermatocytes.


Asunto(s)
Proteínas Portadoras/metabolismo , Moléculas de Adhesión Celular/metabolismo , Aparato de Golgi/metabolismo , Inmunoglobulinas/metabolismo , Proteínas de la Membrana/metabolismo , Espermatogénesis , Espermatogonias/metabolismo , Animales , Sitios de Unión , Proteínas Portadoras/química , Proteínas Portadoras/genética , Células Cultivadas , Aparato de Golgi/ultraestructura , Péptidos y Proteínas de Señalización Intracelular , Masculino , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Unión Proteica , Transporte de Proteínas , Espermatogonias/citología
7.
J Chem Inf Model ; 59(4): 1472-1485, 2019 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-30908019

RESUMEN

We recently reported an integrated fragment-based optimization strategy called DOTS (Diversity Oriented Target-focused Synthesis) that combines automated virtual screening (VS) with semirobotized organic synthesis coupled to in vitro evaluation. The molecular modeling part consists of hit-to-lead chemistry, based on the growing paradigm. Here, we have extended the applicability of the DOTS strategy by adding new functionalities, allowing a generic chemistry-driven linking approach with a particular emphasis on covalent drugs. Indeed, the covalent mode of action can be described as a specific case of linking, where suitable linkers are sought to fuse a bound organic compound with a nucleophilic protein side chain. The proof of concept is established using three retrospective study cases in which known noncovalent inhibitors have been converted to covalent inhibitors. Our method is able to automatically design reference covalent inhibitors (and/or analogs) from an initial activated substructure and predict their binding mode. More importantly, the reference compounds are ranked high among several hundred putative adducts, demonstrating the utility of the approach to design covalent inhibitors.


Asunto(s)
Simulación por Computador , Diseño de Fármacos , Bibliotecas de Moléculas Pequeñas/química , Modelos Moleculares , Conformación Molecular , Bibliotecas de Moléculas Pequeñas/farmacología
8.
J Biol Chem ; 292(7): 2956-2965, 2017 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-28049725

RESUMEN

Golgin45 is required for normal Golgi structure and the transportation of protein from the ER. It forms a specific complex with GRASP55 in vivo Little is known regarding the molecular details of this interaction and its structural role in stacking of the Golgi complex. Here, we present the crystal structure of the GRASP domains of GRASP55 in complex with the Golgin45 C-terminal peptide, determined at 1.33 Å resolution. Similar to the structure of GRASP65 bound to GM130 reported recently, this structure reveals more than one interacting site and involves both PDZ1 and PDZ2 domains of the GRASP simultaneously. The C-terminal peptides of Golgin45 and GM130 present a conserved PDZ domain binding motif sequence and recognize the canonical PDZ-peptide binding groove of the PDZ1 domains of GRASP55 and GRASP65. A main difference in this recognition process resides in a structural rearrangement of GRASP65-GM130 that does not occur for the GRASP55-Golgin45 complex. The binding site at the cleft between the PDZ1 and PDZ2 domains of GRASP65 is dominated by hydrophobic interactions with GM130 that are not observed in the GRASP55-Golgin45 complex. In addition, a unique zinc finger structure is revealed in the GRASP55-Golgin45 complex crystal structure. Mutagenesis experiments support these structural observations and demonstrate that two of these sites are required to form a stable complex. Finally, a novel Golgi stacking model is proposed according to these structural findings.


Asunto(s)
Proteínas Portadoras/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/química , Cristalografía por Rayos X , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana/química , Ratones , Unión Proteica , Conformación Proteica , Homología de Secuencia de Aminoácido
10.
J Biol Chem ; 290(44): 26373-82, 2015 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-26363069

RESUMEN

GM130 and GRASP65 are Golgi peripheral membrane proteins that play a key role in Golgi stacking and vesicle tethering. However, the molecular details of their interaction and their structural role as a functional unit remain unclear. Here, we present the crystal structure of the PDZ domains of GRASP65 in complex with the GM130 C-terminal peptide at 1.96-Å resolution. In contrast to previous findings proposing that GM130 interacts with GRASP65 at the PDZ2 domain only, our crystal structure of the complex indicates that GM130 binds to GRASP65 at two distinct sites concurrently and that both the PDZ1 and PDZ2 domains of GRASP65 participate in this molecular interaction. Mutagenesis experiments support these structural observations and demonstrate that they are required for GRASP65-GM130 association.


Asunto(s)
Autoantígenos/química , Proteínas de la Membrana/química , Autoantígenos/genética , Autoantígenos/metabolismo , Cristalografía por Rayos X , Aparato de Golgi/química , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Proteínas de la Matriz de Golgi , Células HeLa , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutagénesis , Dominios PDZ , Estructura Cuaternaria de Proteína
11.
PLoS Pathog ; 10(3): e1003978, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24603707

RESUMEN

Vaccinia virus polymerase holoenzyme is composed of the DNA polymerase E9, the uracil-DNA glycosylase D4 and A20, a protein with no known enzymatic activity. The D4/A20 heterodimer is the DNA polymerase co-factor whose function is essential for processive DNA synthesis. Genetic and biochemical data have established that residues located in the N-terminus of A20 are critical for binding to D4. However, no information regarding the residues of D4 involved in A20 binding is yet available. We expressed and purified the complex formed by D4 and the first 50 amino acids of A20 (D4/A201₋50). We showed that whereas D4 forms homodimers in solution when expressed alone, D4/A201₋50 clearly behaves as a heterodimer. The crystal structure of D4/A201₋50 solved at 1.85 Å resolution reveals that the D4/A20 interface (including residues 167 to 180 and 191 to 206 of D4) partially overlaps the previously described D4/D4 dimer interface. A201₋50 binding to D4 is mediated by an α-helical domain with important leucine residues located at the very N-terminal end of A20 and a second stretch of residues containing Trp43 involved in stacking interactions with Arg167 and Pro173 of D4. Point mutations of the latter residues disturb D4/A201₋50 formation and reduce significantly thermal stability of the complex. Interestingly, small molecule docking with anti-poxvirus inhibitors selected to interfere with D4/A20 binding could reproduce several key features of the D4/A201₋50 interaction. Finally, we propose a model of D4/A201₋50 in complex with DNA and discuss a number of mutants described in the literature, which affect DNA synthesis. Overall, our data give new insights into the assembly of the poxvirus DNA polymerase cofactor and may be useful for the design and rational improvement of antivirals targeting the D4/A20 interface.


Asunto(s)
ADN Polimerasa Dirigida por ADN/química , Virus Vaccinia/química , Virus Vaccinia/enzimología , Animales , Cromatografía en Gel , Cristalografía , ADN Polimerasa Dirigida por ADN/ultraestructura , Escherichia coli , Holoenzimas/química , Holoenzimas/ultraestructura , Simulación del Acoplamiento Molecular , Subunidades de Proteína/química , Virus Vaccinia/ultraestructura
12.
Environ Res ; 147: 59-70, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26852006

RESUMEN

Risk assessment studies often ignore within-city variations of air pollutants. Our objective was to quantify the risk associated with fine particulate matter (PM2.5) exposure in 2 urban areas using fine-scale air pollution modeling and to characterize how this risk varied according to social deprivation. In Grenoble and Lyon areas (0.4 and 1.2 million inhabitants, respectively) in 2012, PM2.5 exposure was estimated on a 10×10m grid by coupling a dispersion model to population density. Outcomes were mortality, lung cancer and term low birth weight incidences. Cases attributable to air pollution were estimated overall and stratifying areas according to the European Deprivation Index (EDI), taking 10µg/m(3) yearly average as reference (counterfactual) level. Estimations were repeated assuming spatial homogeneity of air pollutants within urban area. Median PM2.5 levels were 18.1 and 19.6µg/m(3) in Grenoble and Lyon urban areas, respectively, corresponding to 114 (5.1% of total, 95% confidence interval, CI, 3.2-7.0%) and 491 non-accidental deaths (6.0% of total, 95% CI 3.7-8.3%) attributable to long-term exposure to PM2.5, respectively. Attributable term low birth weight cases represented 23.6% of total cases (9.0-37.1%) in Grenoble and 27.6% of cases (10.7-42.6%) in Lyon. In Grenoble, 6.8% of incident lung cancer cases were attributable to air pollution (95% CI 3.1-10.1%). Risk was lower by 8 to 20% when estimating exposure through background stations. Risk was highest in neighborhoods with intermediate to higher social deprivation. Risk assessment studies relying on background stations to estimate air pollution levels may underestimate the attributable risk.


Asunto(s)
Contaminación del Aire/efectos adversos , Exposición a Riesgos Ambientales , Monitoreo del Ambiente/métodos , Neoplasias Pulmonares/epidemiología , Material Particulado/efectos adversos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Contaminación del Aire/análisis , Niño , Preescolar , Ciudades , Francia/epidemiología , Humanos , Incidencia , Lactante , Recién Nacido de Bajo Peso , Recién Nacido , Neoplasias Pulmonares/inducido químicamente , Persona de Mediana Edad , Modelos Teóricos , Mortalidad , Tamaño de la Partícula , Material Particulado/análisis , Características de la Residencia , Medición de Riesgo , Factores Socioeconómicos , Adulto Joven
13.
J Biol Chem ; 289(37): 25783-96, 2014 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-25074927

RESUMEN

The RNA-synthesizing machinery of the severe acute respiratory syndrome Coronavirus (SARS-CoV) is composed of 16 non-structural proteins (nsp1-16) encoded by ORF1a/1b. The 148-amino acid nsp10 subunit contains two zinc fingers and is known to interact with both nsp14 and nsp16, stimulating their respective 3'-5' exoribonuclease and 2'-O-methyltransferase activities. Using alanine-scanning mutagenesis, in cellulo bioluminescence resonance energy transfer experiments, and in vitro pulldown assays, we have now identified the key residues on the nsp10 surface that interact with nsp14. The functional consequences of mutations introduced at these positions were first evaluated biochemically by monitoring nsp14 exoribonuclease activity. Disruption of the nsp10-nsp14 interaction abrogated the nsp10-driven activation of the nsp14 exoribonuclease. We further showed that the nsp10 surface interacting with nsp14 overlaps with the surface involved in the nsp10-mediated activation of nsp16 2'-O-methyltransferase activity, suggesting that nsp10 is a major regulator of SARS-CoV replicase function. In line with this notion, reverse genetics experiments supported an essential role of the nsp10 surface that interacts with nsp14 in SARS-CoV replication, as several mutations that abolished the interaction in vitro yielded a replication-negative viral phenotype. In contrast, mutants in which the nsp10-nsp16 interaction was disturbed proved to be crippled but viable. These experiments imply that the nsp10 surface that interacts with nsp14 and nsp16 and possibly other subunits of the viral replication complex may be a target for the development of antiviral compounds against pathogenic coronaviruses.


Asunto(s)
Infecciones por Coronavirus/enzimología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/enzimología , Proteínas no Estructurales Virales/genética , Replicación Viral/genética , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Infecciones por Coronavirus/patología , Cristalografía por Rayos X , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Humanos , Metiltransferasas/genética , Metiltransferasas/metabolismo , Mutagénesis , Mapas de Interacción de Proteínas/genética , Proteínas no Estructurales Virales/metabolismo
14.
Nucleic Acids Res ; 41(Database issue): D824-7, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23203891

RESUMEN

Protein-protein interactions are considered as one of the next generation of therapeutic targets. Specific tools thus need to be developed to tackle this challenging chemical space. In an effort to derive some common principles from recent successes, we have built 2P2Idb (freely accessible at http://2p2idb.cnrs-mrs.fr), a hand-curated structural database dedicated to protein-protein interactions with known orthosteric modulators. It includes all interactions for which both the protein-protein and protein-ligand complexes have been structurally characterized. A web server provides links to related sites of interest, binding affinity data, pre-calculated structural information about protein-protein interfaces and 3D interactive views through java applets. Comparison of interfaces in 2P2Idb to those of representative datasets of heterodimeric complexes has led to the identification of geometrical parameters and residue properties to assess the druggability of protein-protein complexes. A tool is proposed to calculate a series of biophysical and geometrical parameters that characterize protein-protein interfaces. A large range of descriptors are computed including, buried accessible surface area, gap volume, non-bonded contacts, hydrogen-bonds, atom and residue composition, number of segments and secondary structure contribution. All together the 2P2I database represents a structural source of information for scientists from academic institutions or pharmaceutical industries.


Asunto(s)
Bases de Datos de Proteínas , Complejos Multiproteicos/química , Mapeo de Interacción de Proteínas , Internet , Complejos Multiproteicos/efectos de los fármacos , Estructura Secundaria de Proteína , Programas Informáticos , Interfaz Usuario-Computador
15.
Med Sci (Paris) ; 31(3): 312-9, 2015 Mar.
Artículo en Francés | MEDLINE | ID: mdl-25855285

RESUMEN

The identification of complete networks of protein-protein interactions (PPI) within a cell has contributed to major breakthroughs in understanding biological pathways, host-pathogen interactions and cancer development. As a consequence, PPI have emerged as a new class of promising therapeutic targets. However, they are still considered as a challenging class of targets for drug discovery programs. Recent successes have allowed the characterization of structural and physicochemical properties of protein-protein interfaces leading to a better understanding of how they can be disrupted with small molecule compounds. In addition, characterization of the profiles of PPI inhibitors has allowed the development of PPI-focused libraries. In this review, we present the current efforts at developing chemical libraries dedicated to these innovative targets.


Asunto(s)
Descubrimiento de Drogas/métodos , Mapeo de Interacción de Proteínas , Bibliotecas de Moléculas Pequeñas/metabolismo , Animales , Comercio , Descubrimiento de Drogas/economía , Humanos , Unión Proteica , Mapeo de Interacción de Proteínas/métodos , Transducción de Señal , Bibliotecas de Moléculas Pequeñas/economía
16.
EMBO Rep ; 13(10): 877-9, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22986552

RESUMEN

The first EMBO workshop on 'Protein-Protein Interaction Analysis & Modulation' took place in June 2012 in Roscoff, France. It brought together researchers to discuss the growing field of protein network analysis and the modulation of protein-protein interactions, as well as outstanding related issues including the daunting challenge of integrating interactomes in systems biology and in the modelling of signalling networks.


Asunto(s)
Mapeo de Interacción de Proteínas/tendencias , Animales , Descubrimiento de Drogas , Humanos , Dominios y Motivos de Interacción de Proteínas , Mapas de Interacción de Proteínas , Proteínas/agonistas , Proteínas/antagonistas & inhibidores , Proteínas/química
17.
bioRxiv ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38746413

RESUMEN

The phosphoinositide-3 kinase (PI3K), a heterodimeric enzyme, plays a pivotal role in cellular metabolism and survival. Its deregulation is associated with major human diseases, particularly cancer. The p85 regulatory subunit of PI3K binds to the catalytic p110 subunit via its C-terminal domains, stabilising it in an inhibited state. Certain Src homology 3 (SH3) domains can activate p110 by binding to the proline-rich (PR) 1 motif located at the N-terminus of p85. However, the mechanism by which this N-terminal interaction activates the C-terminally bound p110 remains elusive. Moreover, the intrinsically poor ligand selectivity of SH3 domains raises the question of how they can control PI3K. Combining structural, biophysical, and functional methods, we demonstrate that the answers to both these unknown issues are linked: PI3K-activating SH3 domains engage in additional "tertiary" interactions with the C-terminal domains of p85, thereby relieving their inhibition of p110. SH3 domains lacking these tertiary interactions may still bind to p85 but cannot activate PI3K. Thus, p85 uses a functional selection mechanism that precludes nonspecific activation rather than nonspecific binding. This separation of binding and activation may provide a general mechanism for how biological activities can be controlled by promiscuous protein-protein interaction domains.

18.
Biochim Biophys Acta Proteins Proteom ; 1872(3): 140989, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38142947

RESUMEN

VANGL2 is a core component of the non-canonical Wnt/Planar Cell Polarity signaling pathway that uses its highly conserved carboxy-terminal type 1 PDZ-binding motif (PBM) to bind a variety of PDZ proteins. In this study, we characterize and quantitatively assess the largest VANGL2 PDZome-binding profile documented so far, using orthogonal methods. The results of our holdup approach support VANGL2 interactions with a large panel of both long-recognized and unprecedented PDZ domains. Truncation and point mutation analyses of the VANGL2 PBM establish that, beyond the strict requirement of the P-0 / V521 and P-2 / T519 amino acids, upstream residues, including E518, Q516 and R514 at, respectively, P-3, P-5 and P-7 further contribute to the robustness of VANGL2 interactions with two distinct PDZ domains, SNX27 and SCRIBBLE-PDZ3. In agreement with these data, incremental amino-terminal deletions of the VANGL2 PBM causes its overall affinity to progressively decline. Moreover, the holdup data establish that the PDZome binding repertoire of VANGL2 starts to diverge significantly with the truncation of E518. A structural analysis of the SYNJ2BP-PDZ/VANGL2 interaction with truncated PBMs identifies a major conformational change in the binding direction of the PBM peptide after the P-2 position. Finally, we report that the PDZome binding profile of VANGL2 is dramatically rearranged upon phosphorylation of S517, T519 and S520. Our crystallographic approach illustrates how SYNJ2BP accommodates a S520-phosphorylated PBM peptide through the ideal positioning of two basic residues, K48 and R86. Altogether our data provides a comprehensive view of the VANGL2 PDZ network and how this network specifically responds to the post-translation modification of distinct PBM residues. These findings should prove useful in guiding future functional and molecular studies of the key PCP component VANGL2.


Asunto(s)
Aminoácidos , Polaridad Celular , Fosforilación , Procesamiento Proteico-Postraduccional , Péptidos
19.
Org Biomol Chem ; 11(28): 4719-26, 2013 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-23760068

RESUMEN

Access to diastereoisomeric forms of original spirolactam frameworks and investigation of their folded potentials are depicted here. Taking advantage of a stereoselective ring-contraction reaction, the Transannular Rearrangement of Activated Lactams (TRAL), followed by two unprecedented tandem reactions, we describe here an efficient access to elegant spirocyclic scaffolds. After dimerization, NMR analyses, circular dichroism, SEM and molecular modelling indicated the existence of an attractive edifice able to fold and behave as a PPII helix, a common yet neglected peptidic secondary structure.


Asunto(s)
Materiales Biomiméticos/química , Materiales Biomiméticos/síntesis química , Lactamas/química , Lactamas/síntesis química , Conformación Molecular , Técnicas de Química Sintética , Modelos Moleculares , Péptidos/química , Estructura Secundaria de Proteína , Estereoisomerismo , Especificidad por Sustrato
20.
J Med Chem ; 66(7): 4633-4658, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-36939673

RESUMEN

The rapid identification of early hits by fragment-based approaches and subsequent hit-to-lead optimization represents a challenge for drug discovery. To address this challenge, we created a strategy called "DOTS" that combines molecular dynamic simulations, computer-based library design (chemoDOTS) with encoded medicinal chemistry reactions, constrained docking, and automated compound evaluation. To validate its utility, we applied our DOTS strategy to the challenging target syntenin, a PDZ domain containing protein and oncology target. Herein, we describe the creation of a "best-in-class" sub-micromolar small molecule inhibitor for the second PDZ domain of syntenin validated in cancer cell assays. Key to the success of our DOTS approach was the integration of protein conformational sampling during hit identification stage and the synthetic feasibility ranking of the designed compounds throughout the optimization process. This approach can be broadly applied to other protein targets with known 3D structures to rapidly identify and optimize compounds as chemical probes and therapeutic candidates.


Asunto(s)
Dominios PDZ , Sinteninas , Descubrimiento de Drogas , Sindecanos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA