Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(20): e2118129119, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35561213

RESUMEN

Neuropathic pain caused by lesions to somatosensory neurons due to injury or disease is a widespread public health problem that is inadequately managed by small-molecule therapeutics due to incomplete pain relief and devastating side effects. Genetically encoded molecules capable of interrupting nociception have the potential to confer long-lasting analgesia with minimal off-target effects. Here, we utilize a targeted ubiquitination approach to achieve a unique posttranslational functional knockdown of high-voltage-activated calcium channels (HVACCs) that are obligatory for neurotransmission in dorsal root ganglion (DRG) neurons. CaV-aßlator comprises a nanobody targeted to CaV channel cytosolic auxiliary ß subunits fused to the catalytic HECT domain of the Nedd4-2 E3 ubiquitin ligase. Subcutaneous injection of adeno-associated virus serotype 9 encoding CaV-aßlator in the hind paw of mice resulted in the expression of the protein in a subset of DRG neurons that displayed a concomitant ablation of CaV currents and also led to an increase in the frequency of spontaneous inhibitory postsynaptic currents in the dorsal horn of the spinal cord. Mice subjected to spare nerve injury displayed a characteristic long-lasting mechanical, thermal, and cold hyperalgesia underlain by a dramatic increase in coordinated phasic firing of DRG neurons as reported by in vivo Ca2+ spike recordings. CaV-aßlator significantly dampened the integrated Ca2+ spike activity and the hyperalgesia in response to nerve injury. The results advance the principle of targeting HVACCs as a gene therapy for neuropathic pain and demonstrate the therapeutic potential of posttranslational functional knockdown of ion channels achieved by exploiting the ubiquitin-proteasome system.


Asunto(s)
Canales de Calcio , Neuralgia , Células Receptoras Sensoriales , Ubiquitinación , Animales , Canales de Calcio/genética , Ganglios Espinales/metabolismo , Técnicas de Silenciamiento del Gen , Terapia Genética/métodos , Ratones , Ubiquitina-Proteína Ligasas Nedd4/genética , Neuralgia/genética , Neuralgia/terapia , Células Receptoras Sensoriales/metabolismo , Ubiquitinación/genética
2.
Mol Psychiatry ; 25(9): 2070-2085, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-30626912

RESUMEN

Although long-studied in the central nervous system, there is increasing evidence that dopamine (DA) has important roles in the periphery including in metabolic regulation. Insulin-secreting pancreatic ß-cells express the machinery for DA synthesis and catabolism, as well as all five DA receptors. In these cells, DA functions as a negative regulator of glucose-stimulated insulin secretion (GSIS), which is mediated by DA D2-like receptors including D2 (D2R) and D3 (D3R) receptors. However, the fundamental mechanisms of DA synthesis, storage, release, and signaling in pancreatic ß-cells and their functional relevance in vivo remain poorly understood. Here, we assessed the roles of the DA precursor L-DOPA in ß-cell DA synthesis and release in conjunction with the signaling mechanisms underlying DA's inhibition of GSIS. Our results show that the uptake of L-DOPA is essential for establishing intracellular DA stores in ß-cells. Glucose stimulation significantly enhances L-DOPA uptake, leading to increased DA release and GSIS reduction in an autocrine/paracrine manner. Furthermore, D2R and D3R act in combination to mediate dopaminergic inhibition of GSIS. Transgenic knockout mice in which ß-cell D2R or D3R expression is eliminated exhibit diminished DA secretion during glucose stimulation, suggesting a new mechanism where D2-like receptors modify DA release to modulate GSIS. Lastly, ß-cell-selective D2R knockout mice exhibit marked postprandial hyperinsulinemia in vivo. These results reveal that peripheral D2R and D3R receptors play important roles in metabolism through their inhibitory effects on GSIS. This opens the possibility that blockade of peripheral D2-like receptors by drugs including antipsychotic medications may significantly contribute to the metabolic disturbances observed clinically.


Asunto(s)
Dopamina , Células Secretoras de Insulina , Animales , Dopamina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Ratones , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/genética , Receptores de Dopamina D3/metabolismo
3.
bioRxiv ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38854018

RESUMEN

Targeted recruitment of E3 ubiquitin ligases to degrade traditionally undruggable proteins is a disruptive paradigm for developing new therapeutics. Two salient limitations are that <2% of the ~600 E3 ligases in the human genome have been exploited to produce proteolysis targeting chimeras (PROTACs), and the efficacy of the approach has not been demonstrated for a vital class of complex multi-subunit membrane proteins- ion channels. NEDD4-1 and NEDD4-2 are physiological regulators of myriad ion channels, and belong to the 28-member HECT (homologous to E6AP C-terminus) family of E3 ligases with widespread roles in cell/developmental biology and diverse diseases including various cancers, immunological and neurological disorders, and chronic pain. The potential efficacy of HECT E3 ligases for targeted protein degradation is unexplored, constrained by a lack of appropriate binders, and uncertain due to their complex regulation by layered intra-molecular and posttranslational mechanisms. Here, we identified a nanobody that binds with high affinity and specificity to a unique site on the N-lobe of the NEDD4-2 HECT domain at a location physically separate from sites critical for catalysis- the E2 binding site, the catalytic cysteine, and the ubiquitin exosite- as revealed by a 3.1 Å cryo-electron microscopy reconstruction. Recruiting endogenous NEDD4-2 to diverse ion channel proteins (KCNQ1, ENaC, and CaV2.2) using a divalent (DiVa) nanobody format strongly reduced their functional expression with minimal off-target effects as assessed by global proteomics, compared to simple NEDD4-2 overexpression. The results establish utility of a HECT E3 ligase for targeted protein downregulation, validate a class of complex multi-subunit membrane proteins as susceptible to this modality, and introduce endogenous E3 ligase recruitment with DiVa nanobodies as a general method to generate novel genetically-encoded ion channel inhibitors.

4.
Cell Death Dis ; 14(4): 297, 2023 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-37120609

RESUMEN

Coronavirus disease (COVID-19) is a contagious respiratory disease caused by the SARS-CoV-2 virus. The clinical phenotypes are variable, ranging from spontaneous recovery to serious illness and death. On March 2020, a global COVID-19 pandemic was declared by the World Health Organization (WHO). As of February 2023, almost 670 million cases and 6,8 million deaths have been confirmed worldwide. Coronaviruses, including SARS-CoV-2, contain a single-stranded RNA genome enclosed in a viral capsid consisting of four structural proteins: the nucleocapsid (N) protein, in the ribonucleoprotein core, the spike (S) protein, the envelope (E) protein, and the membrane (M) protein, embedded in the surface envelope. In particular, the E protein is a poorly characterized viroporin with high identity amongst all the ß-coronaviruses (SARS-CoV-2, SARS-CoV, MERS-CoV, HCoV-OC43) and a low mutation rate. Here, we focused our attention on the study of SARS-CoV-2 E and M proteins, and we found a general perturbation of the host cell calcium (Ca2+) homeostasis and a selective rearrangement of the interorganelle contact sites. In vitro and in vivo biochemical analyses revealed that the binding of specific nanobodies to soluble regions of SARS-CoV-2 E protein reversed the observed phenotypes, suggesting that the E protein might be an important therapeutic candidate not only for vaccine development, but also for the clinical management of COVID designing drug regimens that, so far, are very limited.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Pandemias/prevención & control , Mitocondrias , Homeostasis
5.
Nat Commun ; 13(1): 7556, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36494348

RESUMEN

Ca2+ influx through high-voltage-activated calcium channels (HVACCs) controls diverse cellular functions. A critical feature enabling a singular signal, Ca2+ influx, to mediate disparate functions is diversity of HVACC pore-forming α1 and auxiliary CaVß1-CaVß4 subunits. Selective CaVα1 blockers have enabled deciphering their unique physiological roles. By contrast, the capacity to post-translationally inhibit HVACCs based on CaVß isoform is non-existent. Conventional gene knockout/shRNA approaches do not adequately address this deficit owing to subunit reshuffling and partially overlapping functions of CaVß isoforms. Here, we identify a nanobody (nb.E8) that selectively binds CaVß1 SH3 domain and inhibits CaVß1-associated HVACCs by reducing channel surface density, decreasing open probability, and speeding inactivation. Functionalizing nb.E8 with Nedd4L HECT domain yielded Chisel-1 which eliminated current through CaVß1-reconstituted CaV1/CaV2 and native CaV1.1 channels in skeletal muscle, strongly suppressed depolarization-evoked Ca2+ influx and excitation-transcription coupling in hippocampal neurons, but was inert against CaVß2-associated CaV1.2 in cardiomyocytes. The results introduce an original method for probing distinctive functions of ion channel auxiliary subunit isoforms, reveal additional dimensions of CaVß1 signaling in neurons, and describe a genetically-encoded HVACC inhibitor with unique properties.


Asunto(s)
Canales de Calcio , Miocitos Cardíacos , Canales de Calcio/metabolismo , Miocitos Cardíacos/metabolismo , Neuronas/metabolismo , Dominios Homologos src , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Calcio/metabolismo
6.
Methods Enzymol ; 654: 139-167, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34120711

RESUMEN

Plasma membrane-localized ion channels are essential for diverse physiological processes such as neurotransmission, muscle contraction, and osmotic homeostasis. The surface density of such ion channels is a major determinant of their function, and tuning this variable is a powerful way to regulate physiology. Dysregulation of ion channel surface density due to inherited or de novo mutations underlies many serious diseases, and molecules that can correct trafficking deficits are potential therapeutics and useful research tools. We have developed targeted ubiquitination and deubiquitination approaches that enable selective posttranslational down- or up-regulation, respectively, of desired ion channels. The method employs bivalent molecules comprised of an ion-channel-targeted nanobody fused to catalytic domains of either an E3 ubiquitin ligase or a deubiquitinase. Here, we use two examples to provide detailed protocols that illustrate the utility of the approach-rescued surface expression of a trafficking-deficient mutant KV7.1 (KCNQ1) channel that causes long QT syndrome, and selective elimination of the CaV2.2 voltage-gated calcium channel from the plasma membrane using targeted ubiquitination. Important aspects of the approach include having a robust assay to measure ion channel surface density and generating nanobody binders to cytosolic domains or subunits of targeted ion channels. Accordingly, we also review available methods for determining ion channel surface density and nanobody selection.


Asunto(s)
Canales Iónicos , Ubiquitina-Proteína Ligasas , Membrana Celular/metabolismo , Canales Iónicos/genética , Canales Iónicos/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
7.
Sci Adv ; 6(14): eaay9572, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32270040

RESUMEN

The endoplasmic reticulum (ER) is a highly dynamic network of membranes. Here, we combine live-cell microscopy with in situ cryo-electron tomography to directly visualize ER dynamics in several secretory cell types including pancreatic ß-cells and neurons under near-native conditions. Using these imaging approaches, we identify a novel, mobile form of ER, ribosome-associated vesicles (RAVs), found primarily in the cell periphery, which is conserved across different cell types and species. We show that RAVs exist as distinct, highly dynamic structures separate from the intact ER reticular architecture that interact with mitochondria via direct intermembrane contacts. These findings describe a new ER subcompartment within cells.


Asunto(s)
Vesículas Citoplasmáticas/metabolismo , Retículo Endoplásmico/metabolismo , Ribosomas/metabolismo , Animales , Transporte Biológico , Microscopía por Crioelectrón , Vesículas Citoplasmáticas/ultraestructura , Retículo Endoplásmico/ultraestructura , Aparato de Golgi/metabolismo , Aparato de Golgi/ultraestructura , Ratones , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Imagen Molecular , Especificidad de Órganos , Ratas , Ribosomas/ultraestructura , Estrés Fisiológico
8.
Elife ; 82019 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-31403402

RESUMEN

Inhibiting high-voltage-activated calcium channels (HVACCs; CaV1/CaV2) is therapeutic for myriad cardiovascular and neurological diseases. For particular applications, genetically-encoded HVACC blockers may enable channel inhibition with greater tissue-specificity and versatility than is achievable with small molecules. Here, we engineered a genetically-encoded HVACC inhibitor by first isolating an immunized llama nanobody (nb.F3) that binds auxiliary HVACC CaVß subunits. Nb.F3 by itself is functionally inert, providing a convenient vehicle to target active moieties to CaVß-associated channels. Nb.F3 fused to the catalytic HECT domain of Nedd4L (CaV-aßlator), an E3 ubiquitin ligase, ablated currents from diverse HVACCs reconstituted in HEK293 cells, and from endogenous CaV1/CaV2 channels in mammalian cardiomyocytes, dorsal root ganglion neurons, and pancreatic ß cells. In cardiomyocytes, CaV-aßlator redistributed CaV1.2 channels from dyads to Rab-7-positive late endosomes. This work introduces CaV-aßlator as a potent genetically-encoded HVACC inhibitor, and describes a general approach that can be broadly adapted to generate versatile modulators for macro-molecular membrane protein complexes.


Asunto(s)
Productos Biológicos/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio/metabolismo , Anticuerpos de Dominio Único/farmacología , Animales , Productos Biológicos/aislamiento & purificación , Bloqueadores de los Canales de Calcio/aislamiento & purificación , Camélidos del Nuevo Mundo , Células HEK293 , Humanos , Unión Proteica
9.
PLoS One ; 11(2): e0148684, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26849707

RESUMEN

Direct measurement of insulin is critical for basic and clinical studies of insulin secretion. However, current methods are expensive and time-consuming. We developed an insulin assay based on homogenous time-resolved fluorescence that is significantly more rapid and cost-effective than current commonly used approaches. This assay was applied effectively to an insulin secreting cell line, INS-1E cells, as well as pancreatic islets, allowing us to validate the assay by elucidating mechanisms by which dopamine regulates insulin release. We found that dopamine functioned as a significant negative modulator of glucose-stimulated insulin secretion. Further, we showed that bromocriptine, a known dopamine D2/D3 receptor agonist and newly approved drug used for treatment of type II diabetes mellitus, also decreased glucose-stimulated insulin secretion in islets to levels comparable to those caused by dopamine treatment.


Asunto(s)
Fluorescencia , Células Secretoras de Insulina/metabolismo , Insulina/análisis , Animales , Bromocriptina/química , Bromocriptina/farmacología , Línea Celular , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/citología , Ratones , Ratas , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/agonistas , Receptores de Dopamina D3/metabolismo
10.
Nat Neurosci ; 19(4): 578-86, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26900925

RESUMEN

Neurotransmission at dopaminergic synapses has been studied with techniques that provide high temporal resolution, but cannot resolve individual synapses. To elucidate the spatial dynamics and heterogeneity of individual dopamine boutons, we developed fluorescent false neurotransmitter 200 (FFN200), a vesicular monoamine transporter 2 (VMAT2) substrate that selectively traces monoamine exocytosis in both neuronal cell culture and brain tissue. By monitoring electrically evoked Ca(2+) transients with GCaMP3 and FFN200 release simultaneously, we found that only a small fraction of dopamine boutons that exhibited Ca(2+) influx engaged in exocytosis, a result confirmed with activity-dependent loading of the endocytic probe FM1-43. Thus, only a low fraction of striatal dopamine axonal sites with uptake-competent VMAT2 vesicles are capable of transmitter release. This is consistent with the presence of functionally 'silent' dopamine vesicle clusters and represents, to the best of our knowledge, the first report suggestive of presynaptically silent neuromodulatory synapses.


Asunto(s)
Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Exocitosis/fisiología , Colorantes Fluorescentes/metabolismo , Terminales Presinápticos/metabolismo , Vesículas Sinápticas/metabolismo , Animales , Células Cultivadas , Cuerpo Estriado/química , Dopamina/análisis , Femenino , Colorantes Fluorescentes/análisis , Células HEK293 , Humanos , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Neurotransmisores/análisis , Neurotransmisores/metabolismo , Técnicas de Cultivo de Órganos , Terminales Presinápticos/química , Vesículas Sinápticas/química
11.
Cancer Biol Ther ; 10(4): 397-405, 2010 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-20574166

RESUMEN

BZL101 is an aqueous extract from the Scutellaria barbata plant shown to have anticancer properties in a variety of human cancers. In order to determine its efficacy on human reproductive cancers, we assessed the responses of two human breast cancer cell lines, estrogen sensitive MCF7 and estrogen insensitive MDA-MB-231, and of two human prostate cancer cell lines, androgen sensitive LNCaP and androgen insensitive PC3 which are human cell lines that represent early and late stage reproductive cancers. BZL101 inhibited reproductive cancer growth in all cell lines by regulating expression levels of key cell cycle components that differ with respect to the cancer cell phenotypes. In early stage estrogen sensitive MCF7 cells, BZL101 induced a G1 cell cycle arrest and ablated expression of key G1 cell cycle regulators Cyclin D1, CDK2 and CDK4, as well as growth factor stimulatory pathways and estrogen receptor-α expression. Transfection of luciferase reporter plasmids revealed that the loss of CDK2, CDK4 and estrogen receptor-α transcript expression resulted from the BZL-dependent ablation of promoter activities. BZL101 growth arrests early stage androgen sensitive LNCaP cells in the G2/M phase with corresponding decreases in Cyclin B1, CDK1 and androgen receptor expression. In late stage hormone insensitive breast (MDA-MB-231) and prostate (PC3) cancer cells, BZL101 induced an S phase arrest with corresponding ablations in Cyclin A2 and CDK2 expression. Our results demonstrate that BZL101 exerts phenotype specific anti-proliferative gene expression responses in human breast and prostate cancer cells, which will be valuable in the potential development of BZL-based therapeutic strategies for human reproductive cancers.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Fase G1/efectos de los fármacos , Fitoterapia , Extractos Vegetales/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Antineoplásicos Fitogénicos/uso terapéutico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ciclina A2/genética , Ciclina B1/genética , Ciclina D1/genética , Quinasa 2 Dependiente de la Ciclina/genética , Quinasa 4 Dependiente de la Ciclina/genética , Femenino , Citometría de Flujo , Expresión Génica , Humanos , Masculino , Extractos Vegetales/uso terapéutico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Receptores Androgénicos/genética , Receptores de Estrógenos/genética , Receptores de Factores de Crecimiento/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Scutellaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA