Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Biol Evol ; 40(3)2023 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-36811946

RESUMEN

The mutualistic ectomycorrhizal (ECM) fungal genus Pisolithus comprises 19 species defined to date which colonize the roots of >50 hosts worldwide suggesting that substantial genomic and functional evolution occurred during speciation. To better understand this intra-genus variation, we undertook a comparative multi-omic study of nine Pisolithus species sampled from North America, South America, Asia, and Australasia. We found that there was a small core set of genes common to all species (13%), and that these genes were more likely to be significantly regulated during symbiosis with a host than accessory or species-specific genes. Thus, the genetic "toolbox" foundational to the symbiotic lifestyle in this genus is small. Transposable elements were located significantly closer to gene classes including effector-like small secreted proteins (SSPs). Poorly conserved SSPs were more likely to be induced by symbiosis, suggesting that they may be a class of protein that tune host specificity. The Pisolithus gene repertoire is characterized by divergent CAZyme profiles when compared with other fungi, both symbiotic and saprotrophic. This was driven by differences in enzymes associated with symbiotic sugar processing, although metabolomic analysis suggest that neither copy number nor expression of these genes is sufficient to predict sugar capture from a host plant or its metabolism in fungal hyphae. Our results demonstrate that intra-genus genomic and functional diversity within ECM fungi is greater than previously thought, underlining the importance of continued comparative studies within the fungal tree of life to refine our focus on pathways and evolutionary processes foundational to this symbiotic lifestyle.


Asunto(s)
Basidiomycota , Micorrizas , Micorrizas/genética , Simbiosis/genética , Basidiomycota/genética , Raíces de Plantas , Azúcares
2.
New Phytol ; 238(2): 845-858, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36702619

RESUMEN

Ectomycorrhizal (EcM) fungi play a crucial role in the mineral nitrogen (N) nutrition of their host trees. While it has been proposed that several EcM species also mobilize organic N, studies reporting the EcM ability to degrade N-containing polymers, such as chitin, remain scarce. Here, we assessed the capacity of a representative collection of 16 EcM species to acquire 15 N from 15 N-chitin. In addition, we combined genomics and transcriptomics to identify pathways involved in exogenous chitin degradation between these fungal strains. Boletus edulis, Imleria badia, Suillus luteus, and Hebeloma cylindrosporum efficiently mobilized N from exogenous chitin. EcM genomes primarily contained genes encoding for the direct hydrolysis of chitin. Further, we found a significant relationship between the capacity of EcM fungi to assimilate organic N from chitin and their genomic and transcriptomic potentials for chitin degradation. These findings demonstrate that certain EcM fungal species depolymerize chitin using hydrolytic mechanisms and that endochitinases, but not exochitinases, represent the enzymatic bottleneck of chitin degradation. Finally, this study shows that the degradation of exogenous chitin by EcM fungi might be a key functional trait of nutrient cycling in forests dominated by EcM fungi.


Asunto(s)
Micorrizas , Micorrizas/genética , Micorrizas/metabolismo , Quitina/metabolismo , Árboles/metabolismo , Bosques , Genómica , Suelo
3.
Phytopathology ; 113(2): 252-264, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36044359

RESUMEN

Nutrient acquisition by rust fungi during their biotrophic growth has been assigned to a few transporters expressed in haustorial infection structures. We performed a comparative genomic analysis of all transporter genes (hereafter termed transportome) classified according to the Transporter Classification Database, focusing specifically on rust fungi (order Pucciniales) versus other species in the Dikarya. We also surveyed expression of transporter genes in the poplar rust fungus for which transcriptomics data are available across the whole life cycle. Despite a significant increase in gene number, rust fungi presented a reduced transportome compared with most fungi in the Dikarya. However, a few transporter families in the subclass Porters showed significant expansions. Notably, three metal transport-related families involved in the import, export, and sequestration of metals were expanded in Pucciniales and expressed at various stages of the rust life cycle, suggesting a tight regulation of metal homeostasis. The most remarkable gene expansion in the Pucciniales was observed for the oligopeptide transporter (OPT) family, with 25 genes on average compared with seven to 14 genes in the other surveyed taxonomical ranks. A phylogenetic analysis showed several specific expansion events at the root of the order Pucciniales with subsequent expansions in rust taxonomical families. The OPT genes showed dynamic expression patterns along the rust life cycle and more particularly during infection of the poplar host tree, suggesting a possible specialization for the acquisition of nitrogen and sulfur through the transport of oligopeptides from the host during biotrophic growth.


Asunto(s)
Basidiomycota , Enfermedades de las Plantas , Filogenia , Enfermedades de las Plantas/microbiología , Basidiomycota/genética , Hongos , Perfilación de la Expresión Génica
4.
Environ Microbiol ; 24(2): 784-802, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33817942

RESUMEN

Mineral weathering by microorganisms is considered to occur through a succession of mechanisms based on acidification and chelation. While the role of acidification is established, the role of siderophores is difficult to disentangle from the effect of the acidification. We took advantage of the ability of strain Collimonas pratensis PMB3(1) to weather minerals but not to acidify depending on the carbon source to address the role of siderophores in mineral weathering. We identified a single non-ribosomal peptide synthetase (NRPS) responsible for siderophore biosynthesis in the PMB3(1) genome. By combining iron-chelating assays, targeted mutagenesis and chemical analyses (HPLC and LC-ESI-HRMS), we identified the siderophore produced as malleobactin X and how its production depends on the concentration of available iron. Comparison with the genome sequences of other collimonads evidenced that malleobactin production seems to be a relatively conserved functional trait, though some collimonads harboured other siderophore synthesis systems. We also revealed by comparing the wild-type strain and its mutant impaired in the production of malleobactin that the ability to produce this siderophore is essential to allow the dissolution of hematite under non-acidifying conditions. This study represents the first characterization of the siderophore produced by collimonads and its role in mineral weathering.


Asunto(s)
Oxalobacteraceae , Hierro , Minerales , Sideróforos/genética , Tiempo (Meteorología)
5.
New Phytol ; 233(5): 2294-2309, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34861049

RESUMEN

The ectomycorrhizal (ECM) symbiosis has independently evolved from diverse types of saprotrophic ancestors. In this study, we seek to identify genomic signatures of the transition to the ECM habit within the hyperdiverse Russulaceae. We present comparative analyses of the genomic architecture and the total and secreted gene repertoires of 18 species across the order Russulales, of which 13 are newly sequenced, including a representative of a saprotrophic member of Russulaceae, Gloeopeniophorella convolvens. The genomes of ECM Russulaceae are characterized by a loss of genes for plant cell wall-degrading enzymes (PCWDEs), an expansion of genome size through increased transposable element (TE) content, a reduction in secondary metabolism clusters, and an association of small secreted proteins (SSPs) with TE 'nests', or dense aggregations of TEs. Some PCWDEs have been retained or even expanded, mostly in a species-specific manner. The genome of G. convolvens possesses some characteristics of ECM genomes (e.g. loss of some PCWDEs, TE expansion, reduction in secondary metabolism clusters). Functional specialization in ECM decomposition may drive diversification. Accelerated gene evolution predates the evolution of the ECM habit, indicating that changes in genome architecture and gene content may be necessary to prime the evolutionary switch.


Asunto(s)
Agaricales , Micorrizas , Agaricales/genética , Elementos Transponibles de ADN/genética , Evolución Molecular , Hábitos , Micorrizas/genética , Filogenia , Simbiosis/genética
6.
New Phytol ; 233(3): 1383-1400, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34767630

RESUMEN

We aimed to identify genomic traits of transitions to ectomycorrhizal ecology within the Boletales by comparing the genomes of 21 symbiotrophic species with their saprotrophic brown-rot relatives. Gene duplication rate is constant along the backbone of Boletales phylogeny with large loss events in several lineages, while gene family expansion sharply increased in the late Miocene, mostly in the Boletaceae. Ectomycorrhizal Boletales have a reduced set of plant cell-wall-degrading enzymes (PCWDEs) compared with their brown-rot relatives. However, the various lineages retain distinct sets of PCWDEs, suggesting that, over their evolutionary history, symbiotic Boletales have become functionally diverse. A smaller PCWDE repertoire was found in Sclerodermatineae. The gene repertoire of several lignocellulose oxidoreductases (e.g. laccases) is similar in brown-rot and ectomycorrhizal species, suggesting that symbiotic Boletales are capable of mild lignocellulose decomposition. Transposable element (TE) proliferation contributed to the higher evolutionary rate of genes encoding effector-like small secreted proteins, proteases, and lipases. On the other hand, we showed that the loss of secreted CAZymes was not related to TE activity but to DNA decay. This study provides novel insights on our understanding of the mechanisms influencing the evolutionary diversification of symbiotic boletes.


Asunto(s)
Basidiomycota , Micorrizas , Basidiomycota/genética , Evolución Biológica , Micorrizas/genética , Filogenia , Simbiosis/genética
7.
Environ Microbiol ; 23(10): 5716-5732, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33538380

RESUMEN

Because they comprise some of the most efficient wood-decayers, Polyporales fungi impact carbon cycling in forest environment. Despite continuous discoveries on the enzymatic machinery involved in wood decomposition, the vision on their evolutionary adaptation to wood decay and genome diversity remains incomplete. We combined the genome sequence information from 50 Polyporales species, including 26 newly sequenced genomes and sought for genomic and functional adaptations to wood decay through the analysis of genome composition and transcriptome responses to different carbon sources. The genomes of Polyporales from different phylogenetic clades showed poor conservation in macrosynteny, indicative of genome rearrangements. We observed different gene family expansion/contraction histories for plant cell wall degrading enzymes in core polyporoids and phlebioids and captured expansions for genes involved in signalling and regulation in the lineages of white rotters. Furthermore, we identified conserved cupredoxins, thaumatin-like proteins and lytic polysaccharide monooxygenases with a yet uncharacterized appended module as new candidate players in wood decomposition. Given the current need for enzymatic toolkits dedicated to the transformation of renewable carbon sources, the observed genomic diversity among Polyporales strengthens the relevance of mining Polyporales biodiversity to understand the molecular mechanisms of wood decay.


Asunto(s)
Basidiomycota , Polyporales , Basidiomycota/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genoma Fúngico , Filogenia , Polyporales/genética , Polyporales/metabolismo , Transcriptoma/genética , Madera/microbiología
8.
New Phytol ; 229(5): 2917-2932, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33118170

RESUMEN

Desert truffles are edible hypogeous fungi forming ectendomycorrhizal symbiosis with plants of Cistaceae family. Knowledge about the reproductive modes of these fungi and the molecular mechanisms driving the ectendomycorrhizal interaction is lacking. Genomes of the highly appreciated edible desert truffles Terfezia claveryi Chatin and Tirmania nivea Trappe have been sequenced and compared with other Pezizomycetes. Transcriptomes of T. claveryi × Helianthemum almeriense mycorrhiza from well-watered and drought-stressed plants, when intracellular colonizations is promoted, were investigated. We have identified the fungal genes related to sexual reproduction in desert truffles and desert-truffles-specific genomic and secretomic features with respect to other Pezizomycetes, such as the expansion of a large set of gene families with unknown Pfam domains and a number of species or desert-truffle-specific small secreted proteins differentially regulated in symbiosis. A core set of plant genes, including carbohydrate, lipid-metabolism, and defence-related genes, differentially expressed in mycorrhiza under both conditions was found. Our results highlight the singularities of desert truffles with respect to other mycorrhizal fungi while providing a first glimpse on plant and fungal determinants involved in ecto to endo symbiotic switch that occurs in desert truffle under dry conditions.


Asunto(s)
Cistaceae , Micorrizas , Ascomicetos , Estilo de Vida , Reproducción , Simbiosis
9.
Mol Plant Microbe Interact ; 33(3): 444-461, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31765287

RESUMEN

Apple rust disease caused by Gymnosporangium yamadae is one of the major threats to apple orchards. In this study, dual RNA-seq analysis was conducted to simultaneously monitor gene expression profiles of G. yamadae and infected apple leaves during the formation of rust spermogonia and aecia. The molecular mechanisms underlying this compatible interaction at 10 and 30 days postinoculation (dpi) indicate a significant reaction from the host plant and comprise detoxication pathways at the earliest stage and the induction of secondary metabolism pathways at 30 dpi. Such host reactions have been previously reported in other rust pathosystems and may represent a general reaction to rust infection. G. yamadae transcript profiling indicates a conserved genetic program in spermogonia and aecia that is shared with other rust fungi, whereas secretome prediction reveals the presence of specific secreted candidate effector proteins expressed during apple infection. Unexpectedly, the survey of fungal unigenes in the transcriptome assemblies of inoculated and mock-inoculated apple leaves reveals that G. yamadae infection may modify the fungal community composition in the apple phyllosphere at 30 dpi. Collectively, our results provide novel insights into the compatible apple-G. yamadae interaction and advance the knowledge of this heteroecious demicyclic rust fungus.


Asunto(s)
Basidiomycota/patogenicidad , Malus/metabolismo , Enfermedades de las Plantas/microbiología , Hojas de la Planta/metabolismo , Transcriptoma , Perfilación de la Expresión Génica , Malus/microbiología , Hojas de la Planta/microbiología
10.
Environ Microbiol ; 22(1): 122-141, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31621176

RESUMEN

As members of the plant microbiota, arbuscular mycorrhizal fungi (AMF, Glomeromycotina) symbiotically colonize plant roots. AMF also possess their own microbiota, hosting some uncultivable endobacteria. Ongoing research has revealed the genetics underlying plant responses to colonization by AMF, but the fungal side of the relationship remains in the dark. Here, we sequenced the genome of Gigaspora margarita, a member of the Gigasporaceae in an early diverging group of the Glomeromycotina. In contrast to other AMF, G. margarita may host distinct endobacterial populations and possesses the largest fungal genome so far annotated (773.104 Mbp), with more than 64% transposable elements. Other unique traits of the G. margarita genome include the expansion of genes for inorganic phosphate metabolism, the presence of genes for production of secondary metabolites and a considerable number of potential horizontal gene transfer events. The sequencing of G. margarita genome reveals the importance of its immune system, shedding light on the evolutionary pathways that allowed early diverging fungi to interact with both plants and bacteria.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Glomeromycota/fisiología , Micorrizas/fisiología , Raíces de Plantas/microbiología , Plantas/microbiología , Simbiosis/fisiología , Bacterias/clasificación , Bacterias/genética , Secuencia de Bases , Transferencia de Gen Horizontal , Genoma Fúngico/genética , Glomeromycota/genética , Microbiota/genética
11.
Environ Microbiol ; 22(3): 1089-1103, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31760680

RESUMEN

Microbial communities interplay with their environment through their functional traits that can be a response or an effect on the environment. Here, we explore how a functional trait-the decomposition of organic matter, can be addressed based on genetic markers and how the expression of these markers reflect ecological strategies of two fungal litter decomposer Gymnopus androsaceus and Chalara longipes. We sequenced the genomes of these two fungi, as well as their transcriptomes at different steps of Pinus sylvestris needles decomposition in microcosms. Our results highlighted that if the gene content of the two species could indicate similar potential decomposition abilities, the expression levels of specific gene families belonging to the glycoside hydrolase category reflected contrasting ecological strategies. Actually, C. longipes, the weaker decomposer in this experiment, turned out to have a high content of genes involved in cell wall polysaccharides decomposition but low expression levels, reflecting a versatile ecology compare to the more competitive G. androsaceus with high expression levels of keystone functional genes. Thus, we established that sequential expression of genes coding for different components of the decomposer machinery indicated adaptation to chemical changes in the substrate as decomposition progressed.


Asunto(s)
Hongos/genética , Hongos/metabolismo , Microbiota/fisiología , Hojas de la Planta/microbiología , Transcripción Genética , Ascomicetos/genética , Ascomicetos/metabolismo , Ecosistema , Regulación Fúngica de la Expresión Génica , Genoma Fúngico/genética , Glicósido Hidrolasas/genética
12.
BMC Genomics ; 20(1): 723, 2019 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-31597570

RESUMEN

BACKGROUND: Gymnosporangium spp. are fungal plant pathogens causing rust disease and most of them are known to infect two different host plants (heteroecious) with four spore stages (demicyclic). In the present study, we sequenced the transcriptome of G. japonicum teliospores on its host plant Juniperus chinensis and we performed comparison to the transcriptomes of G. yamadae and G. asiaticum at the same life stage, that happens in the same host but on different organs. RESULTS: Functional annotation for the three Gymnosporangium species showed the expression of a conserved genetic program with the top abundant cellular categories corresponding to energy, translation and signal transduction processes, indicating that this life stage is particularly active. Moreover, the survey of predicted secretomes in the three Gymnosporangium transcriptomes revealed shared and specific genes encoding carbohydrate active enzymes and secreted proteins of unknown function that could represent candidate pathogenesis effectors. A transcript encoding a hemicellulase of the glycoside hydrolase 26 family, previously identified in other rust fungi, was particularly highly expressed suggesting a general role in rust fungi. The comparison between the transcriptomes of the three Gymnosporangium spp. and selected Pucciniales species in different taxonomical families allowed to identify lineage-specific protein families that may relate to the biology of teliospores in rust fungi. Among clustered gene families, 205, 200 and 152 proteins were specifically identified in G. japonicum, G. yamadae and G. asiaticum, respectively, including candidate effectors expressed in teliospores. CONCLUSIONS: This comprehensive comparative transcriptomics study of three Gymnosporangium spp. identified gene functions and metabolic pathways particularly expressed in teliospores, a stage of the life cycle that is mostly overlooked in rust fungi. Secreted protein encoding transcripts expressed in teliospores may reveal new candidate effectors related to pathogenesis. Although this spore stage is not involved in host plant infection but in the production of basidiospores infecting plants in the Amygdaloideae, we speculate that candidate effectors may be expressed as early as the teliospore stage for preparing further infection by basidiospores.


Asunto(s)
Basidiomycota/genética , Proteínas Fúngicas/genética , Perfilación de la Expresión Génica/métodos , Tracheophyta/microbiología , Basidiomycota/clasificación , Basidiomycota/patogenicidad , Regulación Fúngica de la Expresión Génica , Estadios del Ciclo de Vida , Familia de Multigenes , Filogenia , Análisis de Secuencia de ARN , Esporas Fúngicas/genética
13.
BMC Genomics ; 20(1): 605, 2019 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-31337355

RESUMEN

BACKGROUND: Lichens, encompassing 20,000 known species, are symbioses between specialized fungi (mycobionts), mostly ascomycetes, and unicellular green algae or cyanobacteria (photobionts). Here we describe the first parallel genomic analysis of the mycobiont Cladonia grayi and of its green algal photobiont Asterochloris glomerata. We focus on genes/predicted proteins of potential symbiotic significance, sought by surveying proteins differentially activated during early stages of mycobiont and photobiont interaction in coculture, expanded or contracted protein families, and proteins with differential rates of evolution. RESULTS: A) In coculture, the fungus upregulated small secreted proteins, membrane transport proteins, signal transduction components, extracellular hydrolases and, notably, a ribitol transporter and an ammonium transporter, and the alga activated DNA metabolism, signal transduction, and expression of flagellar components. B) Expanded fungal protein families include heterokaryon incompatibility proteins, polyketide synthases, and a unique set of G-protein α subunit paralogs. Expanded algal protein families include carbohydrate active enzymes and a specific subclass of cytoplasmic carbonic anhydrases. The alga also appears to have acquired by horizontal gene transfer from prokaryotes novel archaeal ATPases and Desiccation-Related Proteins. Expanded in both symbionts are signal transduction components, ankyrin domain proteins and transcription factors involved in chromatin remodeling and stress responses. The fungal transportome is contracted, as are algal nitrate assimilation genes. C) In the mycobiont, slow-evolving proteins were enriched for components involved in protein translation, translocation and sorting. CONCLUSIONS: The surveyed genes affect stress resistance, signaling, genome reprogramming, nutritional and structural interactions. The alga carries many genes likely transferred horizontally through viruses, yet we found no evidence of inter-symbiont gene transfer. The presence in the photobiont of meiosis-specific genes supports the notion that sexual reproduction occurs in Asterochloris while they are free-living, a phenomenon with implications for the adaptability of lichens and the persistent autonomy of the symbionts. The diversity of the genes affecting the symbiosis suggests that lichens evolved by accretion of many scattered regulatory and structural changes rather than through introduction of a few key innovations. This predicts that paths to lichenization were variable in different phyla, which is consistent with the emerging consensus that ascolichens could have had a few independent origins.


Asunto(s)
Ascomicetos/genética , Chlorophyta/genética , Líquenes/genética , Simbiosis/genética , Transferencia de Gen Horizontal , Genoma Fúngico
14.
Environ Microbiol ; 21(10): 3909-3926, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31314937

RESUMEN

The black morel (Morchella importuna Kuo, O'Donnell and Volk) was once an uncultivable wild mushroom, until the development of exogenous nutrient bag (ENB), making its agricultural production quite feasible and stable. To date, how the nutritional acquisition of the morel mycelium is fulfilled to trigger its fruiting remains unknown. To investigate the mechanisms involved in ENB decomposition, the genome of a cultivable morel strain (M. importuna SCYDJ1-A1) was sequenced and the genes coding for the decay apparatus were identified. Expression of the encoded carbohydrate-active enzymes (CAZymes) was then analyzed by metatranscriptomics and metaproteomics in combination with biochemical assays. The results show that a diverse set of hydrolytic and redox CAZymes secreted by the morel mycelium is the main force driving the substrate decomposition. Plant polysaccharides such as starch and cellulose present in ENB substrate (wheat grains plus rice husks) were rapidly degraded, whereas triglycerides were accumulated initially and consumed later. ENB decomposition led to a rapid increase in the organic carbon content in the surface soil of the mushroom bed, which was thereafter consumed during morel fruiting. In contrast to the high carbon consumption, no significant acquisition of nitrogen was observed. Our findings contribute to an increasingly detailed portrait of molecular features triggering morel fruiting.


Asunto(s)
Ascomicetos/genética , Ascomicetos/metabolismo , Carbono/metabolismo , Micelio/metabolismo , Proteoma/genética , Agricultura , Secuencia de Bases , Nutrientes , Polisacáridos/metabolismo
15.
New Phytol ; 222(3): 1584-1598, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30636349

RESUMEN

Glomeromycotina is a lineage of early diverging fungi that establish arbuscular mycorrhizal (AM) symbiosis with land plants. Despite their major ecological role, the genetic basis of their obligate mutualism remains largely unknown, hindering our understanding of their evolution and biology. We compared the genomes of Glomerales (Rhizophagus irregularis, Rhizophagus diaphanus, Rhizophagus cerebriforme) and Diversisporales (Gigaspora rosea) species, together with those of saprotrophic Mucoromycota, to identify gene families and processes associated with these lineages and to understand the molecular underpinning of their symbiotic lifestyle. Genomic features in Glomeromycotina appear to be very similar with a very high content in transposons and protein-coding genes, extensive duplications of protein kinase genes, and loss of genes coding for lignocellulose degradation, thiamin biosynthesis and cytosolic fatty acid synthase. Most symbiosis-related genes in R. irregularis and G. rosea are specific to Glomeromycotina. We also confirmed that the present species have a homokaryotic genome organisation. The high interspecific diversity of Glomeromycotina gene repertoires, affecting all known protein domains, as well as symbiosis-related orphan genes, may explain the known adaptation of Glomeromycotina to a wide range of environmental settings. Our findings contribute to an increasingly detailed portrait of genomic features defining the biology of AM fungi.


Asunto(s)
Genoma Fúngico , Genómica , Glomeromycota/genética , Secuencia Conservada , Elementos Transponibles de ADN/genética , Genes Fúngicos , Lignina/metabolismo , Familia de Multigenes , Filogenia , Polisacáridos/metabolismo , Reproducción , Simbiosis/genética , Transcripción Genética , Regulación hacia Arriba/genética
16.
BMC Genomics ; 19(1): 220, 2018 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-29580224

RESUMEN

BACKGROUND: Heterobasidion parviporum is an economically most important fungal forest pathogen in northern Europe, causing root and butt rot disease of Norway spruce (Picea abies (L.) Karst.). The mechanisms underlying the pathogenesis and virulence of this species remain elusive. No reference genome to facilitate functional analysis is available for this species. RESULTS: To better understand the virulence factor at both phenotypic and genomic level, we characterized 15 H. parviporum isolates originating from different locations across Finland for virulence, vegetative growth, sporulation and saprotrophic wood decay. Wood decay capability and latitude of fungal origins exerted interactive effects on their virulence and appeared important for H. parviporum virulence. We sequenced the most virulent isolate, the first full genome sequences of H. parviporum as a reference genome, and re-sequenced the remaining 14 H. parviporum isolates. Genome-wide alignments and intrinsic polymorphism analysis showed that these isolates exhibited overall high genomic similarity with an average of at least 96% nucleotide identity when compared to the reference, yet had remarkable intra-specific level of polymorphism with a bias for CpG to TpG mutations. Reads mapping coverage analysis enabled the classification of all predicted genes into five groups and uncovered two genomic regions exclusively present in the reference with putative contribution to its higher virulence. Genes enriched for copy number variations (deletions and duplications) and nucleotide polymorphism were involved in oxidation-reduction processes and encoding domains relevant to transcription factors. Some secreted protein coding genes based on the genome-wide selection pressure, or the presence of variants were proposed as potential virulence candidates. CONCLUSION: Our study reported on the first reference genome sequence for this Norway spruce pathogen (H. parviporum). Comparative genomics analysis gave insight into the overall genomic variation among this fungal species and also facilitated the identification of several secreted protein coding genes as putative virulence factors for the further functional analysis. We also analyzed and identified phenotypic traits potentially linked to its virulence.


Asunto(s)
Basidiomycota/genética , Basidiomycota/aislamiento & purificación , Genoma Viral , Genómica/métodos , Picea/microbiología , Enfermedades de las Plantas/microbiología , Factores de Virulencia/genética , Polimorfismo de Nucleótido Simple
17.
New Phytol ; 220(4): 1161-1171, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29355972

RESUMEN

Arbuscular mycorrhizal fungi (AMF) are known to improve plant fitness through the establishment of mycorrhizal symbioses. Genetic and phenotypic variations among closely related AMF isolates can significantly affect plant growth, but the genomic changes underlying this variability are unclear. To address this issue, we improved the genome assembly and gene annotation of the model strain Rhizophagus irregularis DAOM197198, and compared its gene content with five isolates of R. irregularis sampled in the same field. All isolates harbor striking genome variations, with large numbers of isolate-specific genes, gene family expansions, and evidence of interisolate genetic exchange. The observed variability affects all gene ontology terms and PFAM protein domains, as well as putative mycorrhiza-induced small secreted effector-like proteins and other symbiosis differentially expressed genes. High variability is also found in active transposable elements. Overall, these findings indicate a substantial divergence in the functioning capacity of isolates harvested from the same field, and thus their genetic potential for adaptation to biotic and abiotic changes. Our data also provide a first glimpse into the genome diversity that resides within natural populations of these symbionts, and open avenues for future analyses of plant-AMF interactions that link AMF genome variation with plant phenotype and fitness.


Asunto(s)
Variación Genética , Genoma Fúngico , Glomeromycota/genética , Modelos Biológicos , Micorrizas/genética , Simbiosis/genética , Adaptación Fisiológica/genética , Elementos Transponibles de ADN/genética , Proteínas Fúngicas/química , Genes Fúngicos , Glomeromycota/aislamiento & purificación , Anotación de Secuencia Molecular , Filogenia , Dominios Proteicos , Especificidad de la Especie
18.
New Phytol ; 217(3): 1213-1229, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29315638

RESUMEN

Some soil fungi in the Leotiomycetes form ericoid mycorrhizal (ERM) symbioses with Ericaceae. In the harsh habitats in which they occur, ERM plant survival relies on nutrient mobilization from soil organic matter (SOM) by their fungal partners. The characterization of the fungal genetic machinery underpinning both the symbiotic lifestyle and SOM degradation is needed to understand ERM symbiosis functioning and evolution, and its impact on soil carbon (C) turnover. We sequenced the genomes of the ERM fungi Meliniomyces bicolor, M. variabilis, Oidiodendron maius and Rhizoscyphus ericae, and compared their gene repertoires with those of fungi with different lifestyles (ecto- and orchid mycorrhiza, endophytes, saprotrophs, pathogens). We also identified fungal transcripts induced in symbiosis. The ERM fungal gene contents for polysaccharide-degrading enzymes, lipases, proteases and enzymes involved in secondary metabolism are closer to those of saprotrophs and pathogens than to those of ectomycorrhizal symbionts. The fungal genes most highly upregulated in symbiosis are those coding for fungal and plant cell wall-degrading enzymes (CWDEs), lipases, proteases, transporters and mycorrhiza-induced small secreted proteins (MiSSPs). The ERM fungal gene repertoire reveals a capacity for a dual saprotrophic and biotrophic lifestyle. This may reflect an incomplete transition from saprotrophy to the mycorrhizal habit, or a versatile life strategy similar to fungal endophytes.


Asunto(s)
Genómica , Micorrizas/genética , Plantas/microbiología , Simbiosis/genética , Transcriptoma/genética , Secuencia Conservada/genética , Hongos/clasificación , Hongos/genética , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Filogenia , Metabolismo Secundario/genética , Especificidad por Sustrato , Regulación hacia Arriba/genética
19.
BMC Genomics ; 18(1): 157, 2017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28196466

RESUMEN

BACKGROUND: Pisolithus microcarpus (Cooke & Massee) G. Cunn is a gasteromycete that produces closed basidiocarps in symbiosis with eucalypts and acacias. The fungus produces a complex basidiocarp composed of peridioles at different developmental stages and an upper layer of basidiospores free of the hyphae and ready for wind dispersal upon the rupture of the basidiocarp pellis. During basidiosporogenesis, a process that takes place inside the basidiocarp peridioles, a conspicuous reserve of fatty acids is present throughout development. While several previous studies have described basidiosporogenesis inside peridioles, very little is known about gene expression changes that may occur during this part of the fungal life cycle. The objective of this work was to analyze gene transcription during peridiole and basidiospore development, while focusing specifically on cell cycle progression and lipid metabolism. RESULTS: Throughout different developmental stages of the peridioles we analyzed, 737 genes were regulated between adjacent compartments (>5 fold, FDR-corrected p-value < 0.05) corresponding to 3.49% of the genes present in the P. microcarpus genome. We identified three clusters among the regulated genes which showed differential expression between the peridiole developmental stages and the basidiospores. During peridiole development, transcripts for proteins involved in cellular processes, signaling, and information storage were detected, notably those for coding transcription factors, DNA polymerase subunits, DNA repair proteins, and genes involved in chromatin structure. For both internal embedded basidiospores (hereto referred to as "Internal spores", IS) and external free basidiospores (hereto referred to as "Free spores", FS), upregulated transcripts were found to involve primary metabolism, particularly fatty acid metabolism (FA). High expression of transcripts related to ß-oxidation and the glyoxylate shunt indicated that fatty acids served as a major carbon source for basidiosporogenesis. CONCLUSION: Our results show that basidiocarp formation in P. microcarpus involves a complex array of genes that are regulated throughout peridiole development. We identified waves of transcripts with coordinated regulation and identified transcription factors which may play a role in this regulation. This is the first work to describe gene expression patterns during basidiocarp formation in an ectomycorrhizal gasteromycete fungus and sheds light on genes that may play important roles in the developmental process.


Asunto(s)
Basidiomycota/genética , Cuerpos Fructíferos de los Hongos/genética , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Transcriptoma , Ciclo Celular/genética , Análisis por Conglomerados , Biología Computacional/métodos , Anotación de Secuencia Molecular , Reproducibilidad de los Resultados
20.
Proc Natl Acad Sci U S A ; 111(27): 9923-8, 2014 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-24958869

RESUMEN

Basidiomycota (basidiomycetes) make up 32% of the described fungi and include most wood-decaying species, as well as pathogens and mutualistic symbionts. Wood-decaying basidiomycetes have typically been classified as either white rot or brown rot, based on the ability (in white rot only) to degrade lignin along with cellulose and hemicellulose. Prior genomic comparisons suggested that the two decay modes can be distinguished based on the presence or absence of ligninolytic class II peroxidases (PODs), as well as the abundance of enzymes acting directly on crystalline cellulose (reduced in brown rot). To assess the generality of the white-rot/brown-rot classification paradigm, we compared the genomes of 33 basidiomycetes, including four newly sequenced wood decayers, and performed phylogenetically informed principal-components analysis (PCA) of a broad range of gene families encoding plant biomass-degrading enzymes. The newly sequenced Botryobasidium botryosum and Jaapia argillacea genomes lack PODs but possess diverse enzymes acting on crystalline cellulose, and they group close to the model white-rot species Phanerochaete chrysosporium in the PCA. Furthermore, laboratory assays showed that both B. botryosum and J. argillacea can degrade all polymeric components of woody plant cell walls, a characteristic of white rot. We also found expansions in reducing polyketide synthase genes specific to the brown-rot fungi. Our results suggest a continuum rather than a dichotomy between the white-rot and brown-rot modes of wood decay. A more nuanced categorization of rot types is needed, based on an improved understanding of the genomics and biochemistry of wood decay.


Asunto(s)
Basidiomycota/genética , Basidiomycota/metabolismo , Genoma Fúngico , Madera , Basidiomycota/clasificación , Lignina/metabolismo , Datos de Secuencia Molecular , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA