Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Mater ; 21(1): 67-73, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34795400

RESUMEN

Optically addressable spin defects in silicon carbide (SiC) are an emerging platform for quantum information processing compatible with nanofabrication processes and device control used by the semiconductor industry. System scalability towards large-scale quantum networks demands integration into nanophotonic structures with efficient spin-photon interfaces. However, degradation of the spin-optical coherence after integration in nanophotonic structures has hindered the potential of most colour centre platforms. Here, we demonstrate the implantation of silicon vacancy centres (VSi) in SiC without deterioration of their intrinsic spin-optical properties. In particular, we show nearly lifetime-limited photon emission and high spin-coherence times for single defects implanted in bulk as well as in nanophotonic waveguides created by reactive ion etching. Furthermore, we take advantage of the high spin-optical coherences of VSi centres in waveguides to demonstrate controlled operations on nearby nuclear spin qubits, which is a crucial step towards fault-tolerant quantum information distribution based on cavity quantum electrodynamics.


Asunto(s)
Compuestos Inorgánicos de Carbono , Compuestos de Silicona , Compuestos Inorgánicos de Carbono/química , Color , Fotones , Compuestos de Silicona/química
2.
Nano Lett ; 19(4): 2377-2383, 2019 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-30882227

RESUMEN

Single photon emitters in silicon carbide (SiC) are attracting attention as quantum photonic systems ( Awschalom et al. Nat. Photonics 2018 , 12 , 516 - 527 ; Atatüre et al. Nat. Rev. Mater. 2018 , 3 , 38 - 51 ). However, to achieve scalable devices, it is essential to generate single photon emitters at desired locations on demand. Here we report the controlled creation of single silicon vacancy (VSi) centers in 4H-SiC using laser writing without any postannealing process. Due to the aberration correction in the writing apparatus and the nonannealing process, we generate single VSi centers with yields up to 30%, located within about 80 nm of the desired position in the transverse plane. We also investigated the photophysics of the laser writing VSi centers and concluded that there are about 16 photons involved in the laser writing VSi center process. Our results represent a powerful tool in the fabrication of single VSi centers in SiC for quantum technologies and provide further insights into laser writing defects in dielectric materials.

3.
Nano Lett ; 19(10): 7173-7180, 2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31532999

RESUMEN

Color centers with long-lived spins are established platforms for quantum sensing and quantum information applications. Color centers exist in different charge states, each of them with distinct optical and spin properties. Application to quantum technology requires the capability to access and stabilize charge states for each specific task. Here, we investigate charge state manipulation of individual silicon vacancies in silicon carbide, a system which has recently shown a unique combination of long spin coherence time and ultrastable spin-selective optical transitions. In particular, we demonstrate charge state switching through the bias applied to the color center in an integrated silicon carbide optoelectronic device. We show that the electronic environment defined by the doping profile and the distribution of other defects in the device plays a key role for charge state control. Our experimental results and numerical modeling evidence that control of these complex interactions can, under certain conditions, enhance the photon emission rate. These findings open the way for deterministic control over the charge state of spin-active color centers for quantum technology and provide novel techniques for monitoring doping profiles and voltage sensing in microscopic devices.

4.
Nat Commun ; 11(1): 2516, 2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32433556

RESUMEN

Quantum systems combining indistinguishable photon generation and spin-based quantum information processing are essential for remote quantum applications and networking. However, identification of suitable systems in scalable platforms remains a challenge. Here, we investigate the silicon vacancy centre in silicon carbide and demonstrate controlled emission of indistinguishable and distinguishable photons via coherent spin manipulation. Using strong off-resonant excitation and collecting zero-phonon line photons, we show a two-photon interference contrast close to 90% in Hong-Ou-Mandel type experiments. Further, we exploit the system's intimate spin-photon relation to spin-control the colour and indistinguishability of consecutively emitted photons. Our results provide a deep insight into the system's spin-phonon-photon physics and underline the potential of the industrially compatible silicon carbide platform for measurement-based entanglement distribution and photonic cluster state generation. Additional coupling to quantum registers based on individual nuclear spins would further allow for high-level network-relevant quantum information processing, such as error correction and entanglement purification.

5.
Nat Commun ; 10(1): 5569, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31804489

RESUMEN

Quantum technology relies on proper hardware, enabling coherent quantum state control as well as efficient quantum state readout. In this regard, wide-bandgap semiconductors are an emerging material platform with scalable wafer fabrication methods, hosting several promising spin-active point defects. Conventional readout protocols for defect spins rely on fluorescence detection and are limited by a low photon collection efficiency. Here, we demonstrate a photo-electrical detection technique for electron spins of silicon vacancy ensembles in the 4H polytype of silicon carbide (SiC). Further, we show coherent spin state control, proving that this electrical readout technique enables detection of coherent spin motion. Our readout works at ambient conditions, while other electrical readout approaches are often limited to low temperatures or high magnetic fields. Considering the excellent maturity of SiC electronics with the outstanding coherence properties of SiC defects, the approach presented here holds promises for scalability of future SiC quantum devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA