Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Anal Chem ; 95(8): 3922-3931, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36791402

RESUMEN

Characterization of antibody binding epitopes is an important factor in therapeutic drug discovery, as the binding site determines and drives antibody pharmacology and pharmacokinetics. Here, we present a novel application of carbene chemical footprinting with mass spectrometry for identification of antibody binding epitopes at the single-residue level. Two different photoactivated diazirine reagents provide complementary labeling information allowing structural refinement of the antibody binding interface. We applied this technique to map the epitopes of multiple MICA and CTLA-4 antibodies and validated the findings with X-ray crystallography and yeast surface display epitope mapping. The characterized epitopes were used to understand biolayer interferometry-derived competitive binding results at the structural level. We show that carbene footprinting provides fast and high-resolution epitope information critical in the antibody selection process and enables mechanistic understanding of function to accelerate the drug discovery process.


Asunto(s)
Anticuerpos , Metano , Epítopos/química , Mapeo Epitopo/métodos
2.
Anal Chem ; 92(15): 10709-10716, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32639723

RESUMEN

Bispecific antibodies (BsAbs), with a unique mechanism of recognizing two different epitopes or antigens, have shown potential in various therapeutic areas. Molecular characterization of BsAbs' epitopes not only allows for detailed understanding of their mechanism of actions but also guides the design and selection of drug candidate molecules. In this study, we illustrate the practical utility of an integrated approach, including size exclusion chromatography with multiangle light scattering and native mass spectrometry (MS) for the biophysical characterization of complex formation of a BsAb with two target antigens, cluster of differentiation 3 (CD3) and B-cell maturation antigen (BCMA). MS-based protein footprinting strategies, including hydrogen/deuterium exchange MS, fast photochemical oxidation of proteins, and carboxyl group footprinting with glycine ethyl ester, were further applied to determine BsAb's binding epitopes. This combination approach provides molecular details on the binding mechanisms of BsAb to the two distinct antigens with rapid output and high resolution.


Asunto(s)
Anticuerpos Biespecíficos/inmunología , Antígenos/inmunología , Cromatografía en Gel , Mapeo Epitopo/métodos , Espectrometría de Masas , Huella de Proteína , Anticuerpos Biespecíficos/química , Modelos Moleculares , Conformación Proteica
3.
Biochem Biophys Res Commun ; 441(2): 291-6, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24070613

RESUMEN

Alzheimer's disease (AD) is a devastating neurodegenerative disease affecting millions of people. ß-Secretase-1 (BACE-1), an enzyme involved in the processing of the amyloid precursor protein (APP) to form Aß, is a well validated target for AD. Herein, the authors characterize 10 randomly selected hydroxyethylamine (HEA) BACE-1 inhibitors in terms of their association and dissociation rate constants and thermodynamics of binding using surface plasmon resonance (SPR). Rate constants of association (ka) measured at 25 °C ranged from a low of 2.42×10(4) M(-1) s(-1) to the highest value of 8.3×10(5) M(-1) s(-1). Rate constants of dissociation (kd) ranged from 1.09×10(-4) s(-1) (corresponding to a residence time of close to three hours), to the fastest of 0.028 s(-1). Three compounds were selected for further thermodynamic analysis where it was shown that equilibrium binding was enthalpy driven while unfavorable entropy of binding was observed. Structural analysis revealed that upon ligand binding, the BACE-1flap folds down over the bound ligand causing an induced fit. The maximal difference between alpha carbon positions in the open and closed conformations of the flap was over 5 Å. Thus the negative entropy of binding determined using SPR analysis was consistent with an induced fit observed by structural analysis.


Asunto(s)
Enfermedad de Alzheimer/enzimología , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Etanolaminas , Inhibidores de Proteasas/farmacología , Secretasas de la Proteína Precursora del Amiloide/química , Ácido Aspártico Endopeptidasas/química , Proteasas de Ácido Aspártico/antagonistas & inhibidores , Proteasas de Ácido Aspártico/química , Enzimas Inmovilizadas/antagonistas & inhibidores , Enzimas Inmovilizadas/química , Humanos , Cinética , Inhibidores de Proteasas/química , Conformación Proteica , Termodinámica
4.
Sci Rep ; 12(1): 3530, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35241687

RESUMEN

T-cell engagers (TCEs) are a growing class of biotherapeutics being investigated in the clinic for treatment of a variety of hematological and solid tumor indications. However, preclinical evaluation of TCEs in vivo has been mostly limited to xenograft tumor models in human T-cell reconstituted immunodeficient mice, which have a number of limitations. To explore the efficacy of human TCEs in fully immunocompetent hosts, we developed a knock-in mouse model (hCD3E-epi) in which a 5-residue N-terminal fragment of murine CD3-epsilon was replaced with an 11-residue stretch from the human sequence that encodes for a common epitope recognized by anti-human CD3E antibodies in the clinic. T cells from hCD3E-epi mice underwent normal thymic development and could be efficiently activated upon crosslinking of the T-cell receptor with anti-human CD3E antibodies in vitro. Furthermore, a TCE targeting human CD3E and murine CD20 induced robust T-cell redirected killing of murine CD20-positive B cells in ex vivo hCD3E-epi splenocyte cultures, and also depleted nearly 100% of peripheral B cells for up to 7 days following in vivo administration. These results highlight the utility of this novel mouse model for exploring the efficacy of human TCEs in vivo, and suggest a useful tool for evaluating TCEs in combination with immuno-oncology/non-immuno-oncology agents against heme and solid tumor targets in hosts with a fully intact immune system.


Asunto(s)
Anticuerpos Biespecíficos , Neoplasias , Animales , Antígenos CD20 , Complejo CD3 , Epítopos , Humanos , Ratones , Linfocitos T
5.
Nat Commun ; 12(1): 1378, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33654081

RESUMEN

Glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR) and GITR ligand (GITRL) are members of the tumor necrosis superfamily that play a role in immune cell signaling, activation, and survival. GITR is a therapeutic target for directly activating effector CD4 and CD8 T cells, or depleting GITR-expressing regulatory T cells (Tregs), thereby promoting anti-tumor immune responses. GITR activation through its native ligand is important for understanding immune signaling, but GITR structure has not been reported. Here we present structures of human and mouse GITR receptors bound to their cognate ligands. Both species share a receptor-ligand interface and receptor-receptor interface; the unique C-terminal receptor-receptor enables higher order structures on the membrane. Human GITR-GITRL has potential to form a hexameric network of membrane complexes, while murine GITR-GITRL complex forms a linear chain due to dimeric interactions. Mutations at the receptor-receptor interface in human GITR reduce cell signaling with in vitro ligand binding assays and minimize higher order membrane structures when bound by fluorescently labeled ligand in cell imaging experiments.


Asunto(s)
Proteína Relacionada con TNFR Inducida por Glucocorticoide/química , Factores de Necrosis Tumoral/metabolismo , Animales , Fenómenos Biofísicos , Línea Celular , Membrana Celular/metabolismo , Proteína Relacionada con TNFR Inducida por Glucocorticoide/metabolismo , Humanos , Ratones , Modelos Moleculares , Unión Proteica , Reproducibilidad de los Resultados , Factores de Necrosis Tumoral/química
6.
MAbs ; 12(1): 1685350, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31856660

RESUMEN

The development of antibody therapeutics relies on animal models that accurately recapitulate disease biology. Syngeneic mouse models are increasingly used with new molecules to capture the biology of complex cancers and disease states, and to provide insight into the role of the immune system. The establishment of syngeneic mouse models requires the ability to generate surrogate mouse counterparts to antibodies designed for humans. In the field of bispecific antibodies, there remains a dearth of technologies available to generate native IgG-like mouse bispecific antibodies. Thus, we engineered a simple co-expression system for one-step purification of intact mouse IgG1 and IgG2a bispecific antibodies from any antibody pair. We demonstrated proof of concept with CD3/CD20 bispecific antibodies, which highlighted both the quality and efficacy of materials generated by this technology.


Asunto(s)
Anticuerpos Biespecíficos/genética , Inmunoglobulina G/genética , Ingeniería de Proteínas/métodos , Rituximab/metabolismo , Linfocitos T/metabolismo , Animales , Anticuerpos Biespecíficos/metabolismo , Complejo CD3/inmunología , Complejo CD3/metabolismo , Células CHO , Clonación Molecular , Cricetulus , Modelos Animales de Enfermedad , Inmunoglobulina G/metabolismo , Ratones , Unión Proteica , Conformación Proteica , Linfocitos T/inmunología , Trasplante Isogénico
7.
PLoS One ; 12(1): e0169535, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28060885

RESUMEN

Here we describe how real-time label-free biosensors can be used to identify antibodies that compete for closely adjacent or minimally overlapping epitopes on their specific antigen via a mechanism of antibody displacement. By kinetically perturbing one another's binding towards their antigen via the formation of a transient trimolecular complex, antibodies can displace one another in a fully reversible and dose-dependent manner. Displacements can be readily identified when epitope binning assays are performed in a classical sandwich assay format whereby a solution antibody (analyte) is tested for binding to its antigen that is first captured via an immobilized antibody (ligand) because an inverted sandwiching response is observed when an analyte displaces a ligand, signifying the antigen's unusually rapid dissociation from its ligand. In addition to classifying antibodies within a panel in terms of their ability to block or sandwich pair with one another, displacement provides a hybrid mechanism of competition. Using high-throughput epitope binning studies we demonstrate that displacements can be observed on any target, if the antibody panel contains appropriate epitope diversity. Unidirectional displacements occurring between disparate-affinity antibodies can generate apparent asymmetries in a cross-blocking experiment, confounding their interpretation. However, examining competition across a wide enough concentration range will often reveal that these displacements are reversible. Displacement provides a gentle and efficient way of eluting antigen from an otherwise high affinity binding partner which can be leveraged in designing reagents or therapeutic antibodies with unique properties.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Técnicas Biosensibles , Mapeo Epitopo , Epítopos/inmunología , Anticuerpos Monoclonales/química , Afinidad de Anticuerpos/inmunología , Antígenos/inmunología , Análisis por Conglomerados , Epítopos/química , Ensayos Analíticos de Alto Rendimiento , Humanos , Concentración de Iones de Hidrógeno , Cinética , Modelos Moleculares , Unión Proteica/inmunología , Conformación Proteica
8.
MAbs ; 8(2): 264-77, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26652308

RESUMEN

The ability of monoclonal antibodies (mAbs) to target specific antigens with high precision has led to an increasing demand to generate them for therapeutic use in many disease areas. Historically, the discovery of therapeutic mAbs has relied upon the immunization of mammals and various in vitro display technologies. While the routine immunization of rodents yields clones that are stable in serum and have been selected against vast arrays of endogenous, non-target self-antigens, it is often difficult to obtain species cross-reactive mAbs owing to the generally high sequence similarity shared across human antigens and their mammalian orthologs. In vitro display technologies bypass this limitation, but lack an in vivo screening mechanism, and thus may potentially generate mAbs with undesirable binding specificity and stability issues. Chicken immunization is emerging as an attractive mAb discovery method because it combines the benefits of both in vivo and in vitro display methods. Since chickens are phylogenetically separated from mammals, their proteins share less sequence homology with those of humans, so human proteins are often immunogenic and can readily elicit rodent cross-reactive clones, which are necessary for in vivo proof of mechanism studies. Here, we compare the binding characteristics of mAbs isolated from chicken immunization, mouse immunization, and phage display of human antibody libraries. Our results show that chicken-derived mAbs not only recapitulate the kinetic diversity of mAbs sourced from other methods, but appear to offer an expanded repertoire of epitopes. Further, chicken-derived mAbs can bind their native serum antigen with very high affinity, highlighting their therapeutic potential.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Especificidad de Anticuerpos/inmunología , Proteínas Aviares/inmunología , Pollos/inmunología , Epítopos/inmunología , Animales , Sitios de Unión de Anticuerpos , Femenino , Humanos , Cinética , Ratones , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA