Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Infect Immun ; 90(2): e0032821, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-34898249

RESUMEN

The ability to generate genetic variation facilitates rapid adaptation in stressful environments. The opportunistic fungal pathogen Candida albicans frequently undergoes large-scale genomic changes, including aneuploidy and loss of heterozygosity (LOH), following exposure to host environments. However, the specific host factors inducing C. albicans genome instability remain largely unknown. Here, we leveraged the genetic tractability of nematode hosts to investigate whether innate immune components, including antimicrobial peptides (AMPs) and reactive oxygen species (ROS), induced host-associated C. albicans genome instability. C. albicans associated with immunocompetent hosts carried multiple large-scale genomic changes, including LOH and whole-chromosomal and segmental aneuploidies. In contrast, C. albicans associated with immunocompromised hosts deficient in AMPs or ROS production had reduced LOH frequencies and fewer, if any, additional genomic changes. To evaluate whether extensive host-induced genomic changes had long-term consequences for C. albicans adaptation, we experimentally evolved C. albicans in either immunocompetent or immunocompromised hosts and selected for increased virulence. C. albicans evolved in immunocompetent hosts rapidly increased virulence, but C. albicans evolved in immunocompromised hosts did not. Taken together, this work suggests that host-produced ROS and AMPs induces genotypic plasticity in C. albicans which facilitates rapid evolution.


Asunto(s)
Candida albicans , Inestabilidad Genómica , Candida albicans/genética , Mecanismos de Defensa , Especies Reactivas de Oxígeno , Virulencia
2.
J Evol Biol ; 35(1): 5-22, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34826161

RESUMEN

In the past three decades, laboratory natural selection has become a widely used technique in biological research. Most studies which have utilized this technique are in the realm of basic science, often testing hypotheses related to mechanisms of evolutionary change or ecological dynamics. While laboratory natural selection is currently utilized heavily in this setting, there is a significant gap with its usage in applied studies, especially when compared to the other selection experiment methodologies like artificial selection and directed evolution. This is despite avenues of research in the applied sciences which seem well suited to laboratory natural selection. In this review, we place laboratory natural selection in context with other selection experiments, identify the characteristics which make it well suited for particular kinds of applied research and briefly cover key examples of the usefulness of selection experiments within applied science. Finally, we identify three promising areas of inquiry for laboratory natural selection in the applied sciences: bioremediation technology, identifying mechanisms of drug resistance and optimizing biofuel production. Although laboratory natural selection is currently less utilized in applied science when compared to basic research, the method has immense promise in the field moving forward.


Asunto(s)
Laboratorios , Selección Genética , Evolución Biológica , Investigación
3.
J Evol Biol ; 34(5): 845-851, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33783870

RESUMEN

Host-parasite interactions may often be subject to opposing evolutionary forces, which likely influence the evolutionary trajectories of both partners. Natural selection and genetic drift are two major evolutionary forces that act in host and parasite populations. Further, population size is a significant determinant of the relative strengths of these forces. In small populations, drift may undermine the persistence of beneficial alleles, potentially impeding host adaptation to parasites. Here, we investigate two questions: (a) can selection pressure for increased resistance in small, susceptible host populations overcome the effects of drift and (b) can resistance be maintained in small host populations? To answer these questions, we experimentally evolved the host Caenorhabditis elegans against its bacterial parasite, Serratia marcescens, for 13 host generations. We found that strong selection favouring increased host resistance was insufficient to counteract drift in small populations, resulting in persistently high host mortality. Additionally, in small populations of resistant hosts, we found that selection for the maintenance of resistance is not always sufficient to curb the loss of resistance. We compared these results with selection in large host populations. We found that initially resistant, large host populations were able to maintain high levels of resistance. Likewise, initially susceptible, large host populations were able to gain resistance to the parasite. These results show that strong selection pressure for survival is not always sufficient to counteract drift. In consideration of C. elegans natural population dynamics, we suggest that drift may often impede selection in nature.


Asunto(s)
Caenorhabditis elegans/microbiología , Flujo Genético , Interacciones Huésped-Parásitos/genética , Selección Genética , Serratia marcescens/fisiología , Adaptación Biológica , Animales , Evolución Biológica , Caenorhabditis elegans/genética , Caenorhabditis elegans/inmunología
4.
J Evol Biol ; 33(12): 1656-1668, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33047414

RESUMEN

Despite the ubiquity and importance of mutualistic interactions, we know little about the evolutionary genetics underlying their long-term persistence. As in antagonistic interactions, mutualistic symbioses are characterized by substantial levels of phenotypic and genetic diversity. In contrast to antagonistic interactions, however, we, by and large, do not understand how this variation arises, how it is maintained, nor its implications for future evolutionary change. Currently, we rely on phenotypic models to address the persistence of mutualistic symbioses, but the success of an interaction almost certainly depends heavily on genetic interactions. In this review, we argue that evolutionary genetic models could provide a framework for understanding the causes and consequences of diversity and why selection may favour processes that maintain variation in mutualistic interactions.


Asunto(s)
Coevolución Biológica/genética , Simbiosis/genética , Animales , Transferencia de Gen Horizontal , Variación Genética , Interacciones Huésped-Parásitos/genética , Modelos Genéticos , Recombinación Genética
5.
J Evol Biol ; 33(6): 773-782, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32086852

RESUMEN

Theory on the evolution of niche width argues that resource heterogeneity selects for niche breadth. For parasites, this theory predicts that parasite populations will evolve, or maintain, broader host ranges when selected in genetically diverse host populations relative to homogeneous host populations. To test this prediction, we selected the bacterial parasite Serratia marcescens to kill Caenorhabditis elegans in populations that were genetically heterogeneous (50% mix of two experimental genotypes) or homogeneous (100% of either genotype). After 20 rounds of selection, we compared the host range of selected parasites by measuring parasite fitness (i.e. virulence, the selected fitness trait) on the two focal host genotypes and on a novel host genotype. As predicted, heterogeneous host populations selected for parasites with a broader host range: these parasite populations gained or maintained virulence on all host genotypes. This result contrasted with selection in homogeneous populations of one host genotype. Here, host range contracted, with parasite populations gaining virulence on the focal host genotype and losing virulence on the novel host genotype. This pattern was not, however, repeated with selection in homogeneous populations of the second host genotype: these parasite populations did not gain virulence on the focal host genotype, nor did they lose virulence on the novel host genotype. Our results indicate that host heterogeneity can maintain broader host ranges in parasite populations. Individual host genotypes, however, vary in the degree to which they select for specialization in parasite populations.


Asunto(s)
Adaptación Biológica , Evolución Biológica , Interacciones Huésped-Patógeno/genética , Selección Genética , Serratia marcescens/patogenicidad , Animales , Caenorhabditis elegans , Serratia marcescens/genética , Programas Informáticos
6.
Biol Lett ; 16(1): 20190744, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31992149

RESUMEN

Parasites often infect genetically diverse host populations, and the evolutionary trajectories of parasite populations may be shaped by levels of host heterogeneity. Mixed genotype host populations, compared to homogeneous host populations, can reduce parasite prevalence and potentially reduce rates of parasite adaptation due to trade-offs associated with adapting to specific host genotypes. Here, we used experimental evolution to select for increased virulence in populations of the bacterial parasite Serratia marcescens exposed to either heterogeneous or homogeneous populations of Caenorhabditis elegans. We found that parasites exposed to heterogeneous host populations evolved significantly less virulence than parasites exposed to homogeneous host populations over several hundred bacterial generations. Thus, host heterogeneity impeded parasite adaptation to host populations. While we detected trade-offs in virulence evolution, parasite adaptation to two specific host genotypes also resulted in modestly increased virulence against the reciprocal host genotypes. These results suggest that parasite adaptation to heterogeneous host populations may be impeded by both trade-offs and a reduction in the efficacy of selection as different host genotypes exert different selective pressures on a parasite population.


Asunto(s)
Evolución Biológica , Parásitos , Adaptación Fisiológica , Animales , Interacciones Huésped-Parásitos , Serratia marcescens , Virulencia
7.
Biol Lett ; 15(8): 20190432, 2019 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-31455168

RESUMEN

Disease virulence may be strongly influenced by social interactions among pathogens, both during the time course of an infection and evolutionarily. Here, we examine how spiteful bacteriocin production in the insect-pathogenic bacterium Xenorhabdus nematophila is evolutionarily linked to its virulence. We expected a negative correlation between virulence and spite owing to their inverse correlations with growth. We examined bacteriocin production and growth across 14 experimentally evolved lineages that show faster host-killing relative to their ancestral population. Consistent with expectations, these more virulent lineages showed reduced bacteriocin production and faster growth relative to the ancestor. Further, bacteriocin production was negatively correlated with growth across the examined lineages. These results strongly support an evolutionary trade-off between virulence and bacteriocin production and lend credence to the view that disease management can be improved by exploiting pathogen social interactions.


Asunto(s)
Xenorhabdus , Animales , Insectos , Virulencia
8.
J Evol Biol ; 31(12): 1976-1981, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30187979

RESUMEN

Host susceptibility to parasites can vary over space and time. Costs associated with the maintenance of host defence are thought to account for a portion of this variation. Specifically, trade-offs wherein elevated defence is maintained at the cost of fitness in the absence of the parasite may cause levels of host defence to change over time and differ between populations. In previous studies, we found that populations of the host nematode, Caenorhabditis elegans, evolved greater levels of parasite avoidance and resistance against the bacterial parasite, Serratia marcescens. Here, we passaged these host populations either in the presence or absence of the parasite to test for a cost of elevated host defences. After 16 generations, we found that elevated levels of host defence were maintained during evolution in both the presence and absence of the parasite. Further, this maintenance of defence was not the result of limited standing genetic variation, but rather the absence of a measurable cost associated with defence. Therefore, costs associated with host defence may not broadly account for differences in host susceptibility across space and time.


Asunto(s)
Caenorhabditis elegans/genética , Caenorhabditis elegans/microbiología , Aptitud Genética , Serratia/fisiología , Animales , Evolución Biológica , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología
9.
Biol Lett ; 14(6)2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29899128

RESUMEN

Insecticide resistance has evolved in disease vectors worldwide, creating the urgent need to either develop new control methods or restore insecticide susceptibility to regain use of existing tools. Here we show that phenotypic susceptibility can be restored in a highly resistant field-derived strain of Aedes aegypti in only 10 generations through rearing them in the absence of insecticide.


Asunto(s)
Aedes/genética , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Piretrinas/farmacología , Aedes/efectos de los fármacos , Animales , Femenino , Masculino , Mosquitos Vectores/genética , Mutación , Fenotipo
10.
Parasitology ; 145(6): 724-730, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28655368

RESUMEN

Hosts exhibit a variety of defence mechanisms against parasites, including avoidance. Both host-parasite coevolutionary dynamics and the host mating system can alter the evolutionary trajectories of populations. Does the nature of host-parasite interactions and the host mating system affect the mechanisms that evolve to confer host defence? In a previous experimental evolution study, mixed mating and obligately outcrossing Caenorhabditis elegans host populations adapted to either coevolving or static Serratia marcescens parasite populations. Here, we assessed parasite avoidance as a mechanism underlying host adaptation. We measured host feeding preference for the coevolved and static parasites vs preference for Escherichia coli, to assess the evolution of avoidance behaviour within our experiment. We found that mixed mating host populations evolved a preference for E. coli relative to the static parasite strain; therefore, the hosts evolved parasite avoidance as a defence. However, mixed mating hosts did not exhibit E. coli preference when exposed to coevolved parasites, so avoidance cannot account for host adaptation to coevolving parasites. Further, the obligately outcrossing host populations did not exhibit parasite avoidance in the presence of either static or coevolved parasites. Therefore, both the nature of host-parasite interactions and the host mating system shaped the evolution of host defence.


Asunto(s)
Evolución Biológica , Caenorhabditis elegans/fisiología , Interacciones Huésped-Parásitos , Conducta Sexual Animal , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/microbiología , Caenorhabditis elegans/parasitología , Escherichia coli , Interacciones Huésped-Patógeno , Selección Genética , Serratia marcescens/patogenicidad
11.
J Nematol ; 49(4): 357-372, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29353923

RESUMEN

Many of the outstanding questions in disease ecology and evolution call for combining observation of natural host-parasite populations with experimental dissection of interactions in the field and the laboratory. The "rewilding" of model systems holds great promise for this endeavor. Here, we highlight the potential for development of the nematode Caenorhabditis elegans and its close relatives as a model for the study of disease ecology and evolution. This powerful laboratory model was disassociated from its natural habitat in the 1960s. Today, studies are uncovering that lost natural history, with several natural parasites described since 2008. Studies of these natural Caenorhabditis-parasite interactions can reap the benefits of the vast array of experimental and genetic tools developed for this laboratory model. In this review, we introduce the natural parasites of C. elegans characterized thus far and discuss resources available to study them, including experimental (co)evolution, cryopreservation, behavioral assays, and genomic tools. Throughout, we present avenues of research that are interesting and feasible to address with caenorhabditid nematodes and their natural parasites, ranging from the maintenance of outcrossing to the community dynamics of host-associated microbes. In combining natural relevance with the experimental power of a laboratory supermodel, these fledgling host-parasite systems can take on fundamental questions in evolutionary ecology of disease.

12.
Nature ; 462(7271): 350-2, 2009 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-19847164

RESUMEN

The tendency of organisms to reproduce by cross-fertilization despite numerous disadvantages relative to self-fertilization is one of the oldest puzzles in evolutionary biology. For many species, the primary obstacle to the evolution of outcrossing is the cost of production of males, individuals that do not directly contribute offspring and thus diminish the long-term reproductive output of a lineage. Self-fertilizing ('selfing') organisms do not incur the cost of males and therefore should possess at least a twofold numerical advantage over most outcrossing organisms. Two competing explanations for the widespread prevalence of outcrossing in nature despite this inherent disadvantage are the avoidance of inbreeding depression generated by selfing and the ability of outcrossing populations to adapt more rapidly to environmental change. Here we show that outcrossing is favoured in populations of Caenorhabditis elegans subject to experimental evolution both under conditions of increased mutation rate and during adaptation to a novel environment. In general, fitness increased with increasing rates of outcrossing. Thus, each of the standard explanations for the maintenance of outcrossing are correct, and it is likely that outcrossing is the predominant mode of reproduction in most species because it is favoured under ecological conditions that are ubiquitous in natural environments.


Asunto(s)
Adaptación Biológica , Caenorhabditis elegans/fisiología , Cruzamientos Genéticos , Endogamia , Mutación/genética , Animales , Evolución Biológica , Caenorhabditis elegans/genética , Masculino
13.
Am Nat ; 184 Suppl 1: S91-100, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25061681

RESUMEN

Host-parasite interactions can drive rapid, reciprocal genetic changes (coevolution), provided both hosts and parasites have high heritabilities for resistance/infectivity. Similarly, the host's mating system should also affect the rate of coevolutionary change in host-parasite interactions. Using experimental coevolution, we determined the effect of obligate outcrossing verses partial self-fertilization (mixed mating) on the rate of evolutionary change in a nematode host (Caenorhabditis elegans) and its bacterial parasite (Serratia marcescens). Bacterial populations were derived from a common ancestor. We measured the effects of host mating system on host adaptation to the parasite. We then determined the extent of parasite adaptation to their local host populations. Obligately outcrossing hosts exhibited more rapid adaptation to parasites than did mixed mating hosts. In addition, most of the parasites became adapted to infecting their local hosts, but parasites from obligately outcrossing hosts showed a greater level of local adaptation. These results suggest that host populations evolved along separate trajectories and that outcrossing host populations diverged further than partially selfing populations. Finally, parasites tracking outcrossing host populations diverged further than parasites tracking the partially selfing host populations. These results show that the evolutionary trajectories of both hosts and parasites can be shaped by the host's mating system.


Asunto(s)
Adaptación Fisiológica , Evolución Biológica , Caenorhabditis elegans/genética , Caenorhabditis elegans/microbiología , Interacciones Huésped-Patógeno , Reproducción , Serratia marcescens/genética , Animales , Caenorhabditis elegans/fisiología , Organismos Hermafroditas , Autofecundación
14.
Ecol Evol ; 14(3): e11166, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38516572

RESUMEN

Theory predicts that organisms should diversify their offspring when faced with a stressful environment. This prediction has received empirical support across diverse groups of organisms and stressors. For example, when encountered by Caenorhabditis elegans during early development, food limitation (a common environmental stressor) induces the nematodes to arrest in a developmental stage called dauer and to increase their propensity to outcross when they are subsequently provided with food and enabled to develop to maturity. Here we tested whether food limitation first encountered during late development/early adulthood can also induce increased outcrossing propensity in C. elegans. Previously well-fed C. elegans increased their propensity to outcross when challenged with food limitation during the final larval stage of development and into early adulthood, relative to continuously well-fed (control) nematodes. Our results thus support previous research demonstrating that the stress of food limitation can induce increased outcrossing propensity in C. elegans. Furthermore, our results expand on previous work by showing that food limitation can still increase outcrossing propensity even when it is not encountered until late development, and this can occur independently of the developmental and gene expression changes associated with dauer.

15.
bioRxiv ; 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38352489

RESUMEN

Despite substantial costs, biparental sex is the dominant mode of reproduction across plant and animal taxa. The Red Queen hypothesis (RQH) posits that coevolutionary interactions with parasites can favor biparental sex in hosts, despite the costs. In support of the RQH, previous studies found that coevolutionary interactions with virulent bacterial parasites maintained high outcrossing rates in populations of the androdioecious nematode host Caenorhabditis elegans . Here we test three non-mutually exclusive mechanisms that could explain how coevolving parasites maintain outcrossing rates in C. elegans hosts: 1) short-term parasite exposure induces plastic increases in the hosts' propensity to outcross, 2) hosts evolve increased outcrossing propensity in response to selection imposed by coevolving parasites, and 3) outcrossed offspring incur less parasite-mediated fitness loss than selfed offspring, increasing host male frequencies and opportunities for outcrossing. We find no evidence that parasites cause plastic or evolved changes in host outcrossing propensity. However, parental outcrossing significantly increases survival of host offspring in the F2 generation when exposed to a coevolving parasite. Hence, coevolving parasites maintain outcrossing in host populations by selecting against selfed offspring, rather than by inducing changes in the propensity to outcross.

16.
BMC Ecol Evol ; 24(1): 95, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982371

RESUMEN

BACKGROUND: Adaptation to a stressor can lead to costs on other traits. These costs play an unavoidable role on fitness and influence the evolutionary trajectory of a population. Host defense seems highly subject to these costs, possibly because its maintenance is energetically costly but essential to the survival. When assessing the ecological risk related to pollution, it is therefore relevant to consider these costs to evaluate the evolutionary consequences of stressors on populations. However, to the best of our knowledge, the effects of evolution in irradiate environment on host defense have never been studied. Using an experimental evolution approach, we analyzed fitness across 20 transfers (about 20 generations) in Caenorhabditis elegans populations exposed to 0, 1.4, and 50.0 mGy.h- 1 of 137Cs gamma radiation. Then, populations from transfer 17 were placed in the same environmental conditions without irradiation (i.e., common garden) for about 10 generations before being exposed to the bacterial parasite Serratia marcescens and their survival was estimated to study host defense. Finally, we studied the presence of an evolutionary trade-off between fitness of irradiated populations and host defense. RESULTS: We found a lower fitness in both irradiated treatments compared to the control ones, but fitness increased over time in the 50.0 mGy.h- 1, suggesting a local adaptation of the populations. Then, the survival rate of C. elegans to S. marcescens was lower for common garden populations that had previously evolved under both irradiation treatments, indicating that evolution in gamma-irradiated environment had a cost on host defense of C. elegans. Furthermore, we showed a trade-off between standardized fitness at the end of the multigenerational experiment and survival of C. elegans to S. marcescens in the control treatment, but a positive correlation between the two traits for the two irradiated treatments. These results indicate that among irradiated populations, those most sensitive to ionizing radiation are also the most susceptible to the pathogen. On the other hand, other irradiated populations appear to have evolved cross-resistance to both stress factors. CONCLUSIONS: Our study shows that adaptation to an environmental stressor can be associated with an evolutionary cost when a new stressor appears, even several generations after the end of the first stressor. Among irradiated populations, we observed an evolution of resistance to ionizing radiation, which also appeared to provide an advantage against the pathogen. On the other hand, some of the irradiated populations seemed to accumulate sensitivities to stressors. This work provides a new argument to show the importance of considering evolutionary changes in ecotoxicology and for ecological risk assessment.


Asunto(s)
Evolución Biológica , Caenorhabditis elegans , Animales , Caenorhabditis elegans/efectos de la radiación , Caenorhabditis elegans/microbiología , Radiación Ionizante , Serratia marcescens , Rayos gamma/efectos adversos , Aptitud Genética
17.
bioRxiv ; 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39257827

RESUMEN

Widespread antibiotic usage has resulted in the rapid evolution of drug-resistant bacterial pathogens and poses significant threats to public health. Resolving how pathogens respond to antibiotics under different contexts is critical for understanding disease emergence and evolution going forward. The impact of antibiotics has been demonstrated most directly through in vitro pathogen passaging experiments. Independent from antibiotic selection, interactions with hosts have also altered the evolutionary trajectories and fitness landscapes of pathogens, shaping infectious disease outcomes. However, it is unclear how interactions between hosts and antibiotics impact the evolution of pathogen virulence. Here, we evolved and re-sequenced Staphylococcus aureus, a major bacterial pathogen, varying exposure to host and antibiotics to tease apart the contributions of these selective pressures on pathogen adaptation. After 12 passages, S. aureus evolving in Caenorhabditis elegans nematodes exposed to a sub-minimum inhibitory concentration of antibiotic (oxacillin) became highly virulent, regardless of whether the ancestral pathogen was methicillin-resistant (MRSA) or methicillin-sensitive (MSSA). Host and antibiotic exposure selected for reduced drug susceptibility in MSSA lineages while increasing MRSA total growth outside hosts. We identified mutations in genes involved in complex regulatory networks linking virulence and metabolism, including codY , agr , and gdpP , suggesting that rapid adaptation to infect hosts may have pleiotropic effects. In particular, MSSA populations under selection from host and antibiotic accumulated mutations in the global regulator gene codY , which controls biofilm formation in S. aureus. These populations had indeed evolved more robust biofilms-a trait linked to both virulence and antibiotic resistance-suggesting evolution of one trait can confer multiple adaptive benefits. Despite evolving in similar environments, MRSA and MSSA populations proceeded on divergent evolutionary paths, with MSSA populations exhibiting more similarities across replicate populations. Our results underscore the importance of considering multiple and concurrent selective pressures as drivers of pervasive pathogen traits.

18.
Evolution ; 77(6): 1468-1478, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36946220

RESUMEN

Gene flow into populations can increase additive genetic variation and introduce novel beneficial alleles, thus facilitating adaptation. However, gene flow may also impede adaptation by disrupting beneficial genotypes, introducing deleterious alleles, or creating novel dominant negative interactions. While theory and fieldwork have provided insight into the effects of gene flow, direct experimental tests are rare. Here, we evaluated the effects of gene flow on adaptation in the nematode Caenorhabditis elegans during exposure to the bacterial parasite, Serratia marcescens. We evolved hosts against nonevolving parasites for 10 passages while controlling host gene flow and source population. We used source nematode populations with three different genetic backgrounds (one similar to the sink population and two different) and two evolutionary histories (previously adapted to S. marcescens or naive). We found that populations with gene flow exhibited greater increases in parasite resistance than those without gene flow. Additionally, gene flow from adapted populations resulted in greater increases in resistance than gene flow from naive populations, particularly with gene flow from novel genetic backgrounds. Overall, this work demonstrates that gene flow can facilitate adaptation and suggests that the genetic architecture and evolutionary history of source populations can alter the sink population's response to selection.


Asunto(s)
Parásitos , Animales , Flujo Génico , Interacciones Huésped-Patógeno/genética , Serratia marcescens/genética , Adaptación Fisiológica/genética , Caenorhabditis elegans/genética , Interacciones Huésped-Parásitos
19.
Evolution ; 77(11): 2512-2521, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37739788

RESUMEN

The impacts of host-associated microbes on their hosts vary along a continuum of antagonistic, neutral, and beneficial interactions. Transmission mode is predicted to contribute to transitions along the continuum by altering opportunities for the alignment of host and microbe fitness interests. Under vertical transmission, microbial evolution is tightly coupled to the host environment, which may facilitate fitness alignment. In contrast, environmentally transmitted microbes spend time in the external environment, outside of hosts, partially decoupling their evolution from the host. This decoupling may misalign host and microbe fitness interests, potentially favoring antagonistic microbial traits. Here, we tested whether transmission environment alters microbial evolution by manipulating the interaction between a commensal Serratia marcescens bacteria and their insect host Anasa tristis, which is the primary vector of these bacteria into plants, where they cause disease. We experimentally evolved S. marcescens through several selection environments. The bacteria were passaged between A. tristis hosts, between A. tristis hosts and soil, through soil, or through standard culture media. We observed rapid evolution of virulence toward hosts across treatments when bacterial evolution occurred within the host environment, indicating that direct host-to-host transmission can increase opportunities for microbes to adapt to hosts and evolve antagonistic traits.


Asunto(s)
Adaptación Fisiológica , Evolución Biológica , Bacterias , Virulencia , Suelo , Simbiosis
20.
Evol Lett ; 7(6): 371-378, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38045726

RESUMEN

Biparental sex is widespread in nature, yet costly relative to uniparental reproduction. It is generally unclear why self-fertilizing or asexual lineages do not readily invade outcrossing populations. The Red Queen hypothesis predicts that coevolving parasites can prevent self-fertilizing or asexual lineages from invading outcrossing host populations. However, only highly virulent parasites are predicted to maintain outcrossing, which may limit the general applicability of the Red Queen hypothesis. Here, we tested whether the ability of coevolving parasites to prevent invasion of self-fertilization within outcrossing host populations was dependent on parasite virulence. We introduced wild-type Caenorhabditis elegans hermaphrodites, capable of both self-fertilization and outcrossing, into C. elegans populations fixed for a mutant allele conferring obligate outcrossing. Replicate C. elegans populations were exposed for 24 host generations to one of four strains of Serratia marcescens parasites that varied in virulence, under three treatments: a heat-killed (control, noninfectious) parasite treatment, a fixed-genotype (nonevolving) parasite treatment, and a copassaged (potentially coevolving) parasite treatment. As predicted, self-fertilization invaded C. elegans host populations in the control and fixed-parasite treatments, regardless of parasite virulence. In the copassaged treatment, selfing invaded host populations coevolving with low- to mid-virulence strains, but remained rare in hosts coevolving with highly virulent bacterial strains. Therefore, we found that only highly virulent coevolving parasites can impede the invasion of selfing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA