Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nature ; 604(7904): 160-166, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35355011

RESUMEN

Although more than 98% of the human genome is non-coding1, nearly all of the drugs on the market target one of about 700 disease-related proteins. The historical reluctance to invest in non-coding RNA stems partly from requirements for drug targets to adopt a single stable conformation2. Most RNAs can adopt several conformations of similar stabilities. RNA structures also remain challenging to determine3. Nonetheless, an increasing number of diseases are now being attributed to non-coding RNA4 and the ability to target them would vastly expand the chemical space for drug development. Here we devise a screening strategy and identify small molecules that bind the non-coding RNA prototype Xist5. The X1 compound has drug-like properties and binds specifically the RepA motif6 of Xist in vitro and in vivo. Small-angle X-ray scattering analysis reveals that RepA can adopt multiple conformations but favours one structure in solution. X1 binding reduces the conformational space of RepA, displaces cognate interacting protein factors (PRC2 and SPEN), suppresses histone H3K27 trimethylation, and blocks initiation of X-chromosome inactivation. X1 inhibits cell differentiation and growth in a female-specific manner. Thus, RNA can be systematically targeted by drug-like compounds that disrupt RNA structure and epigenetic function.


Asunto(s)
Cromosomas Humanos X , ARN Largo no Codificante , Inactivación del Cromosoma X , Diferenciación Celular , Cromosomas Humanos X/genética , Femenino , Histonas/metabolismo , Humanos , ARN Largo no Codificante/genética , Inactivación del Cromosoma X/genética
2.
RNA ; 29(4): 463-472, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36725318

RESUMEN

Although more than 98% of the human genome is noncoding, nearly all drugs on the market target one of about 700 disease-related proteins. However, an increasing number of diseases are now being attributed to noncoding RNA and the ability to target them would vastly expand the chemical space for drug development. We recently devised a screening strategy based upon affinity-selection mass spectrometry and succeeded in identifying bioactive compounds for the noncoding RNA prototype, Xist. One such compound, termed X1, has drug-like properties and binds specifically to the RepA motif of Xist in vitro and in vivo. Small-angle X-ray scattering analysis reveals that X1 changes the conformation of RepA in solution, thereby explaining the displacement of cognate interacting protein factors (PRC2 and SPEN) and inhibition of X-chromosome inactivation. In this Perspective, we discuss lessons learned from these proof-of-concept experiments and suggest that RNA can be systematically targeted by drug-like compounds to disrupt RNA structure and function.


Asunto(s)
ARN Largo no Codificante , Humanos , ARN Largo no Codificante/metabolismo , Inactivación del Cromosoma X , ARN no Traducido/genética , Proteínas/genética
4.
Nat Chem Biol ; 16(10): 1111-1119, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32690943

RESUMEN

Mass spectrometry-based discovery proteomics is an essential tool for the proximal readout of cellular drug action. Here, we apply a robust proteomic workflow to rapidly profile the proteomes of five lung cancer cell lines in response to more than 50 drugs. Integration of millions of quantitative protein-drug associations substantially improved the mechanism of action (MoA) deconvolution of single compounds. For example, MoA specificity increased after removal of proteins that frequently responded to drugs and the aggregation of proteome changes across cell lines resolved compound effects on proteostasis. We leveraged these findings to demonstrate efficient target identification of chemical protein degraders. Aggregating drug response across cell lines also revealed that one-quarter of compounds modulated the abundance of one of their known protein targets. Finally, the proteomic data led us to discover that inhibition of mitochondrial function is an off-target mechanism of the MAP2K1/2 inhibitor PD184352 and that the ALK inhibitor ceritinib modulates autophagy.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias Pulmonares/metabolismo , Proteómica/métodos , Antineoplásicos/farmacología , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/fisiología , Humanos , Espectrometría de Masas , Proteoma
5.
J Am Chem Soc ; 135(30): 11232-8, 2013 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-23866020

RESUMEN

A biocatalytic platform that employs the final two monomodular type I polyketide synthases of the pikromycin pathway in vitro followed by direct appendage of D-desosamine and final C-H oxidation(s) in vivo was developed and applied toward the synthesis of a suite of 12- and 14-membered ring macrolide natural products. This methodology delivered both compound classes in 13 steps (longest linear sequence) from commercially available (R)-Roche ester in >10% overall yields.


Asunto(s)
Biocatálisis , Macrólidos/metabolismo , Biotransformación , Lactonas/metabolismo , Macrólidos/síntesis química , Sintasas Poliquetidas/metabolismo
6.
ACS Med Chem Lett ; 12(8): 1288-1294, 2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34413958

RESUMEN

Determination of target engagement for candidate drug molecules in the native cellular environment is a significant challenge for drug discovery programs. The cellular thermal shift assay (CETSA) has emerged as a powerful tool for determining compound target engagement through measurement of changes to a protein's thermal stability upon ligand binding. Here, we present a HiBiT thermal shift assay (BiTSA) that deploys a quantitative peptide tag for determination of compound target engagement in the native cellular environment using a high throughput, plate-based luminescence readout. We demonstrate that BiTSA can rapidly assess cellular target engagement of small molecule ligands against their cognate targets and highlight two applications of BiTSA for differentiating small molecules targeting mutant KRAS and TP53.

7.
Eur J Med Chem ; 224: 113686, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34303079

RESUMEN

Pathway activating mutations of the transcription factor NRF2 and its negative regulator KEAP1 are strongly correlative with poor clinical outcome with pemetrexed/carbo(cis)platin/pembrolizumab (PCP) chemo-immunotherapy in lung cancer. Despite the strong genetic support and therapeutic potential for a NRF2 transcriptional inhibitor, currently there are no known direct inhibitors of the NRF2 protein or its complexes with MAF and/or DNA. Herein we describe the design of a novel and high-confidence homology model to guide a medicinal chemistry effort that resulted in the discovery of a series of peptides that demonstrate high affinity, selective binding to the Antioxidant Response Element (ARE) DNA and thereby displace NRF2-MAFG from its promoter, which is an inhibitory mechanism that to our knowledge has not been previously described. In addition to their activity in electrophoretic mobility shift (EMSA) and TR-FRET-based assays, we show significant dose-dependent ternary complex disruption of NRF2-MAFG binding to DNA by SPR, as well as cellular target engagement by thermal destabilization of HiBiT-tagged NRF2 in the NCI-H1944 NSCLC cell line upon digitonin permeabilization, and SAR studies leading to improved cellular stability. We report the characterization and unique profile of lead peptide 18, which we believe to be a useful in vitro tool to probe NRF2 biology in cancer cell lines and models, while also serving as an excellent starting point for additional in vivo optimization toward inhibition of NRF2-driven transcription to address a significant unmet medical need in non-small cell lung cancer (NSCLC).


Asunto(s)
ADN/química , Factor de Transcripción MafG/antagonistas & inhibidores , Factor 2 Relacionado con NF-E2/antagonistas & inhibidores , Péptidos/química , Elementos de Respuesta Antioxidante/efectos de los fármacos , ADN/metabolismo , Diseño de Fármacos , Estabilidad de Medicamentos , Ensayo de Cambio de Movilidad Electroforética , Semivida , Células HeLa , Humanos , Factor de Transcripción MafG/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Péptidos/metabolismo , Péptidos/farmacología , Péptidos/uso terapéutico , Relación Estructura-Actividad
8.
J Org Chem ; 75(21): 7041-51, 2010 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-20882949

RESUMEN

Natural product biosynthetic pathways have evolved enzymes with myriad activities that represent an expansive array of chemical transformations for constructing secondary metabolites. Recently, harnessing the biosynthetic potential of these enzymes through chemoenzymatic synthesis has provided a powerful tool that often rivals the most sophisticated methodologies in modern synthetic chemistry and provides new opportunities for accessing chemical diversity. Herein, we describe our research efforts with enzymes from a broad collection of biosynthetic systems, highlighting recent progress in this exciting field.


Asunto(s)
Enzimas/metabolismo , Ciclización , Enzimas/química , Compuestos Epoxi/metabolismo , Humanos , Hidroxilación , Péptido Sintasas/química , Péptido Sintasas/metabolismo , Sintasas Poliquetidas/química , Sintasas Poliquetidas/metabolismo
9.
J Am Chem Soc ; 131(43): 15784-93, 2009 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-19810731

RESUMEN

The 6-deoxyerythronolide B synthase (DEBS) and pikromycin (Pik) polyketide synthase (PKS) are unique multifunctional enzyme systems that are responsible for the biosynthesis of the erythromycin and pikromycin 14-membered ring aglycones, respectively. Together, these natural product biosynthetic systems provide excellent platforms to examine the fundamental structural and catalytic elements that govern polyketide assembly, processing, and macrocyclization. In these studies, the native pentaketide intermediate for DEBS was synthesized and employed for in vitro chemoenzymatic synthesis of macrolactone products in engineered monomodules Ery5, Ery5-TE, and Ery6. A comparative analysis was performed with the corresponding Pik module 5 (PikAIII) and module 6 (PikAIV), dissecting key similarities and differences between these highly related PKSs. The data revealed that individual modules in the DEBS and Pik PKSs possess distinctive molecular selectivity profiles and suggest that substrate recognition has evolved unique characteristics in each system.


Asunto(s)
Antibacterianos/metabolismo , Eritromicina/metabolismo , Macrólidos/metabolismo , Sintasas Poliquetidas/síntesis química , Cromatografía en Capa Delgada , Sintasas Poliquetidas/metabolismo , Especificidad por Sustrato
10.
Cell Chem Biol ; 25(12): 1506-1518.e13, 2018 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-30318461

RESUMEN

Apart from their antimicrobial properties, tetracyclines demonstrate clinically validated effects in the amelioration of pathological inflammation and human cancer. Delineation of the target(s) and mechanism(s) responsible for these effects, however, has remained elusive. Here, employing quantitative mass spectrometry-based proteomics, we identified human 80S ribosomes as targets of the tetracyclines Col-3 and doxycycline. We then developed in-cell click selective crosslinking with RNA sequence profiling (icCL-seq) to map binding sites for these tetracyclines on key human rRNA substructures at nucleotide resolution. Importantly, we found that structurally and phenotypically variant tetracycline analogs could chemically discriminate these rRNA binding sites. We also found that tetracyclines both subtly modify human ribosomal translation and selectively activate the cellular integrated stress response (ISR). Together, the data reveal that targeting of specific rRNA substructures, activation of the ISR, and inhibition of translation are correlated with the anti-proliferative properties of tetracyclines in human cancer cell lines.


Asunto(s)
Biosíntesis de Proteínas/efectos de los fármacos , ARN Ribosómico/química , ARN Ribosómico/metabolismo , Ribosomas/efectos de los fármacos , Ribosomas/metabolismo , Tetraciclinas/farmacología , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Humanos , Modelos Moleculares , Estructura Molecular , ARN Ribosómico/genética , Relación Estructura-Actividad , Tetraciclinas/química
11.
Org Lett ; 7(17): 3609-12, 2005 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-16092831

RESUMEN

2-Substituted pyridine, quinoline, isoquinoline, bipyridine, and 1,10-phenanthroline analogues of benzylic acetates undergo SmI(2)-promoted coupling with aldehydes and ketones to afford (2-hydroxyalkyl)heteroaromatics. [reaction: see text]

12.
J Org Chem ; 69(8): 2809-15, 2004 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-15074932

RESUMEN

1,10-Phenanthroline reacts with aldehydes and ketones in the presence of samarium diiodide to produce 2-(1-hydroxyalkyl)-1,10-phenanthrolines. The hydroxyalkyl substituent can be functionalized in numerous ways or removed to permit further ligand variation. The carbonyl coupling reaction can also be repeated to provide 2,9-disubstituted phenanthrolines. Taken together, these operations provide ready access to a large number of phenanthroline derivatives to serve as ligand libraries for catalyst exploration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA