RESUMEN
Two sphingosine kinase isoforms, sphingosine kinase 1 (SPHK1) and sphingosine kinase 2 (SPHK2), synthesize the lipid sphingosine-1-phosphate (S1P) by phosphorylating sphingosine. SPHK1 is a cytoplasmic kinase, and SPHK2 is localized to the nucleus and other organelles. In the cytoplasm, the SPHK1/S1P pathway modulates autophagy and protein ubiquitination, among other processes. In the nucleus, the SPHK2/S1P pathway regulates transcription. Here, we hypothesized that the SPHK2/S1P pathway governs protein ubiquitination in neurons. We found that ectopic expression of SPHK2 increases ubiquitinated substrate levels in cultured neurons and pharmacologically inhibiting SPHK2 decreases protein ubiquitination. With mass spectrometry, we discovered that inhibiting SPHK2 affects lipid and synaptic protein networks as well as a ubiquitin-dependent protein network. Several ubiquitin-conjugating and hydrolyzing proteins, such as the E3 ubiquitin-protein ligases HUWE1 and TRIP12, the E2 ubiquitin-conjugating enzyme UBE2Z, and the ubiquitin-specific proteases USP15 and USP30, were downregulated by SPHK2 inhibition. Using RNA sequencing, we found that inhibiting SPHK2 altered lipid and neuron-specific gene networks, among others. Genes that encode the corresponding proteins from the ubiquitin-dependent protein network that we discovered with mass spectrometry were not affected by inhibiting SPHK2, indicating that the SPHK2/S1P pathway regulates ubiquitination at the protein level. We also show that both SPHK2 and HUWE1 were upregulated in the striatum of a mouse model of Huntington's disease, the BACHD mice, indicating that our findings are relevant to neurodegenerative diseases. Our results identify SPHK2/S1P as a novel regulator of protein ubiquitination networks in neurons and provide a new target for developing therapies for neurodegenerative diseases.
Asunto(s)
Neuronas , Fosfotransferasas (Aceptor de Grupo Alcohol) , Ubiquitinación , Animales , Neuronas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Ratones , Células Cultivadas , Ratones Endogámicos C57BLRESUMEN
Stroke is the most common cause of long-term disability and places a high economic burden on the global healthcare system. Functional outcomes from stroke are largely determined by the extent of ischemic injury, however, there is growing recognition that systemic inflammatory responses also contribute to outcomes. Mast cells (MCs) rapidly respond to injury and release histamine (HA), a pro-inflammatory neurotransmitter that enhances inflammation. The gut serves as a major reservoir of HA. We hypothesized that cromolyn, a mast cell stabilizer that prevents the release of inflammatory mediators, would decrease peripheral and central inflammation, reduce MC trafficking to the brain, and improve stroke outcomes. We used the transient middle cerebral artery occlusion (MCAO) model of ischemic stroke in aged (18 mo) male mice to investigate the role of MC in neuroinflammation post-stroke. After MCAO we treated mice with 25 mg/kg body weight of cromolyn (MC stabilizer) by oral gavage. Cromolyn was administered at 3 h, 10 h, 24 h and every 24 h for 3 days post-stroke. Three control groups were used. One group underwent a sham surgery and was treated with cromolyn, one received sham surgery with PBS vehicle and the third underwent MCAO with PBS vehicle. Mice were euthanized at 24 h and 3 days post-stroke. Cromolyn administration significantly reduced MC numbers in the brain at both 24 h and 3 days post-stroke. Infarct volume was not significantly different between groups, however improved functional outcomes were seen at 3 days post-stroke in mice that received cromolyn. Treatment with cromolyn reduced plasma histamine and IL-6 levels in both the 24-h and 3-day cohorts. Gut MCs numbers were significantly reduced after cromolyn treatment at 24 h and 3 days after stroke. To determine if MC trafficking from the gut to the brain occurred after injury, GFP+MCs were adoptively transferred to c-kit-/- MC knock-out animals prior to MCAO. 24 h after stroke, elevated MC recruitment was seen in the ischemic brain. Preventing MC histamine release by cromolyn improved gut barrier integrity and an improvement in stroke-induced dysbiosis was seen with treatment. Our results show that preventing MC histamine release possesses prevents post-stroke neuroinflammation and improves neurological and functional outcomes.
Asunto(s)
Liberación de Histamina , Accidente Cerebrovascular , Humanos , Ratones , Masculino , Animales , Mastocitos , Cromolin Sódico/farmacología , Cromolin Sódico/uso terapéutico , Histamina , Enfermedades Neuroinflamatorias , Accidente Cerebrovascular/complicaciones , Inflamación/tratamiento farmacológico , Inflamación/etiología , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , IsquemiaRESUMEN
Aging is associated with chronic systemic inflammation, which contributes to the development of many age-related diseases, including vascular disease. The world's population is aging, leading to an increasing prevalence of both stroke and vascular dementia. The inflammatory response to ischemic stroke is critical to both stroke pathophysiology and recovery. Age is a predictor of poor outcomes after stroke. The immune response to stroke is altered in aged individuals, which contributes to the disparate outcomes between young and aged patients. In this review, we describe the current knowledge of the effects of aging on the immune system and the cerebral vasculature and how these changes alter the immune response to stroke and vascular dementia in animal and human studies. Potential implications of these age-related immune alterations on chronic inflammation in vascular disease outcome are highlighted.
Asunto(s)
Demencia Vascular , Accidente Cerebrovascular , Anciano , Envejecimiento , Animales , Demencia Vascular/complicaciones , Humanos , InflamaciónRESUMEN
Peroxisomes exist in nearly every cell, oxidizing fats, synthesizing lipids and maintaining redox balance. As the brain ages, multiple pathways are negatively affected, but it is currently unknown if peroxisomal proteins are affected by aging in the brain. While recent studies have investigated a PEX5 homolog in aging C. elegans models and found that it is reduced in aging, it is unclear if PEX5, a mammalian peroxisomal protein that plays a role in peroxisomal homeostasis and degradation, is affected in the aging brain. To answer this question, we first determined the amount of PEX5, in brain homogenates from young (3 months) and aged (26 through 32+ months of age) wild-type mice of both sexes. PEX5 protein was decreased in aged male brains, but this reduction was not significant in female brains. RNAScope and real-time qPCR analyses showed that Pex5 mRNA was also reduced in aged male brain cortices, but not in females. Immunohistochemistry assays of cortical neurons in young and aged male brains showed that the amount of neuronal PEX5 was reduced in aged male brains. Cortical neurons in aged female mice also had reduced PEX5 levels in comparison to younger female mice. In conclusion, total PEX5 levels and Pex5 gene expression both decrease with age in male brains, and neuronal PEX5 levels lower in an age-dependent manner in the cortices of animals of both sexes.
Asunto(s)
Envejecimiento/fisiología , Encéfalo/metabolismo , Neuronas/metabolismo , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/metabolismo , Animales , Citosol/metabolismo , Femenino , Masculino , Ratones , Peroxisomas/genética , Transporte de Proteínas/genética , Receptores Citoplasmáticos y Nucleares/genética , UbiquitinaciónRESUMEN
Autophagy is a natural process of 'self-eating' that occurs within cells and can be either pro-survival or can cause cell death. As a pro-survival mechanism, autophagy obtains energy by recycling cellular components such as macromolecules or organelles. In response to nutrient deprivation, e.g. depletion of amino acids or serum, autophagy is induced and most of these signals converge on the kinase mTOR (mammalian target of rapamycin). It is commonly accepted that glucose inhibits autophagy, since its deprivation from cells cultured in full medium induces autophagy by a mechanism involving AMPK (AMP-activated protein kinase), mTOR and Ulk1. However, we show in the present study that under starvation conditions addition of glucose produces the opposite effect. Specifically, the results of the present study demonstrate that the presence of glucose induces an increase in the levels of LC3 (microtubule-associated protein 1 light chain)-II, in the number and volume density of autophagic vacuoles and in protein degradation by autophagy. Addition of glucose also increases intracellular ATP, which is in turn necessary for the induction of autophagy because the glycolysis inhibitor oxamate inhibits it, and there is also a good correlation between LC3-II and ATP levels. Moreover, we also show that, surprisingly, the induction of autophagy by glucose is independent of AMPK and mTOR and mainly relies on p38 MAPK (mitogen-activated protein kinase).
Asunto(s)
Autofagia/efectos de los fármacos , Glucosa/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Adenosina Trifosfato/metabolismo , Aminoácidos/farmacología , Animales , Western Blotting , Medio de Cultivo Libre de Suero/farmacología , Activación Enzimática/efectos de los fármacos , Células HEK293 , Células HeLa , Humanos , Ratones , Ratones Noqueados , Microscopía Electrónica , Proteínas Asociadas a Microtúbulos/metabolismo , Células 3T3 NIH , Fagosomas/efectos de los fármacos , Fagosomas/metabolismo , Fagosomas/ultraestructura , Proteolisis/efectos de los fármacos , Interferencia de ARN , Vacuolas/efectos de los fármacos , Vacuolas/metabolismo , Vacuolas/ultraestructura , Proteínas Quinasas p38 Activadas por Mitógenos/genéticaRESUMEN
Iron imbalance in the brain negatively affects brain function. With aging, iron levels increase in the brain and contribute to brain damage and neurological disorders. Changes in the cerebral vasculature with aging may enhance iron entry into the brain parenchyma, leading to iron overload and its deleterious consequences. Endothelial senescence has emerged as an important contributor to age-related changes in the cerebral vasculature. Evidence indicates that iron overload may induce senescence in cultured cell lines. Importantly, cells derived from female human and mice generally show enhanced senescence-associated phenotype, compared with males. Thus, we hypothesize that cerebral endothelial cells (CEC) derived from aged female mice are more susceptible to iron-induced senescence, compared with CEC from aged males. We found that aged female mice, but not males, showed cognitive deficits when chronically treated with ferric citrate (FC), and their brains and the brain vasculature showed senescence-associated phenotype. We also found that primary culture of CEC derived from aged female mice, but not male-derived CEC, exhibited senescence-associated phenotype when treated with FC. We identified that the transmembrane receptor Robo4 was downregulated in the brain vasculature and in cultured primary CEC derived from aged female mice, compared with those from male mice. We discovered that Robo4 downregulation contributed to enhanced vulnerability to FC-induced senescence. Thus, our study identifies Robo4 downregulation as a driver of senescence induced by iron overload in primary culture of CEC and a potential risk factor of brain vasculature impairment and brain dysfunction.
Asunto(s)
Senescencia Celular , Sobrecarga de Hierro , Ratones , Humanos , Animales , Masculino , Femenino , Anciano , Senescencia Celular/fisiología , Células Endoteliales , Envejecimiento , Hierro , Receptores de Superficie CelularRESUMEN
Senescence in the cerebral endothelium has been proposed as a mechanism that can drive dysfunction of the cerebral vasculature, which precedes vascular dementia. Cysteine-rich angiogenic inducer 61 (Cyr61/CCN1) is a matricellular protein secreted by cerebral endothelial cells (CEC). CCN1 induces senescence in fibroblasts. However, whether CCN1 contributes to senescence in CEC and how this is regulated requires further study. Aging has been associated with the formation of four-stranded Guanine-quadruplexes (G4s) in G-rich motifs of DNA and RNA. Stabilization of the G4 structures regulates transcription and translation either by upregulation or downregulation depending on the gene target. Previously, we showed that aged mice treated with a G4-stabilizing compound had enhanced senescence-associated (SA) phenotypes in their brains, and these mice exhibited enhanced cognitive deficits. A sequence in the 3'-UTR of the human CCN1 mRNA has the ability to fold into G4s in vitro. We hypothesize that G4 stabilization regulates CCN1 in cultured primary CEC and induces endothelial senescence. We used cerebral microvessel fractions and cultured primary CEC from young (4-months old, m/o) and aged (18-m/o) mice to determine CCN1 levels. SA phenotypes were determined by high-resolution fluorescence microscopy in cultured primary CEC, and we used Thioflavin T to recognize RNA-G4s for fluorescence spectra. We found that cultured CEC from aged mice exhibited enhanced levels of SA phenotypes, and higher levels of CCN1 and G4 stabilization. In cultured CEC, CCN1 induced SA phenotypes, such as SA ß-galactosidase activity, and double-strand DNA damage. Furthermore, CCN1 levels were upregulated by a G4 ligand, and a G-rich motif in the 3'-UTR of the Ccn1 mRNA was folded into a G4. In conclusion, we demonstrate that CCN1 can induce senescence in cultured primary CEC, and we provide evidence that G4 stabilization is a novel mechanism regulating the SASP component CCN1.
RESUMEN
Doxorubicin, a commonly used chemotherapy agent, induces severe cardio- and neurotoxicity. Molecular mechanisms of cardiotoxicity have been extensively studied, but mechanisms by which doxorubicin exhibits its neurotoxic properties remain unclear. Here, we show that doxorubicin impairs neuronal autophagy, leading to the accumulation of an autophagy substrate p62. Neurons treated with doxorubicin contained autophagosomes, damaged mitochondria, and lipid droplets. The brains from mice treated with pegylated liposomal doxorubicin exhibited autophagosomes, often with mitochondria, lipofuscin, and lipid droplets. Interestingly, lysosomes were less acidic in doxorubicin-treated neurons. Overexpression of the transcription factor EB (TFEB), which controls the autophagy-lysosome axis, increased survival of doxorubicin-treated neurons. 2-Hydroxypropyl-ß-cyclodextrin (HPßCD), an activator of TFEB, also promoted neuronal survival, decreased the levels of p62, and lowered the pH in lysosomes. Taken together, substantial changes induced by doxorubicin contribute to neurotoxicity, cognitive disturbances in cancer patients and survivors, and accelerated brain aging. The TFEB pathway might be a new approach for mitigating damage of neuronal autophagy caused by doxorubicin.
Asunto(s)
Autofagia , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Doxorrubicina/farmacología , Lisosomas/fisiología , Neuronas/fisiología , Animales , Autofagosomas/fisiología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Células Cultivadas , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Gotas Lipídicas/fisiología , Ratones , Ratones Desnudos , Ratas , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo , Inhibidores de Topoisomerasa II/farmacologíaRESUMEN
Although implicated in neurodegeneration, autophagy has been characterized mostly in yeast and mammalian non-neuronal cells. In a recent study, we sought to determine if SPHK1 (sphingosine kinase 1), implicated previously in macroautophagy/autophagy in cancer cells, regulates autophagy in neurons. SPHK1 synthesizes sphingosine-1-phosphate (S1P), a bioactive lipid involved in cell survival. In our study, we discovered that, when neuronal autophagy is pharmacologically stimulated, SPHK1 relocalizes to the endocytic and autophagic organelles. Interestingly, in non-neuronal cells stimulated with growth factors, SPHK1 translocates to the plasma membrane, where it phosphorylates sphingosine to produce S1P. Whether SPHK1 also binds to the endocytic and autophagic organelles in non-neuronal cells upon induction of autophagy has not been demonstrated. Here, we determined if the effect in neurons is operant in the SH-SY5Y neuroblastoma cell line. In both non-differentiated and differentiated SH-SY5Y cells, a short incubation of cells in amino acid-free medium stimulated the formation of SPHK1-positive puncta, as in neurons. We also found that, unlike neurons in which these puncta represent endosomes, autophagosomes, and amphisomes, in SH-SY5Y cells SPHK1 is bound only to the endosomes. In addition, a dominant negative form of SPHK1 was very toxic to SH-SY5Y cells, but cultured primary cortical neurons tolerated it significantly better. These results suggest that autophagy in neurons is regulated by mechanisms that differ, at least in part, from those in SH-SY5Y cells.
Asunto(s)
Autofagia , Neuroblastoma/metabolismo , Neuronas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Animales , Apoptosis/fisiología , Autofagosomas/metabolismo , Diferenciación Celular , Línea Celular , Línea Celular Tumoral , Membrana Celular/metabolismo , Supervivencia Celular , Células Cultivadas , Endocitosis , Endosomas/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Luz , Lípidos/química , Lisofosfolípidos/metabolismo , Lisosomas/metabolismo , Fagosomas/metabolismo , Fosforilación , Ratas , Transducción de Señal , Esfingosina/análogos & derivados , Esfingosina/metabolismoRESUMEN
Autophagy is an important homeostatic mechanism that eliminates long-lived proteins, protein aggregates and damaged organelles. Its dysregulation is involved in many neurodegenerative disorders. Autophagy is therefore a promising target for blunting neurodegeneration. We searched for novel autophagic pathways in primary neurons and identified the cytosolic sphingosine-1-phosphate (S1P) pathway as a regulator of neuronal autophagy. S1P, a bioactive lipid generated by sphingosine kinase 1 (SK1) in the cytoplasm, is implicated in cell survival. We found that SK1 enhances flux through autophagy and that S1P-metabolizing enzymes decrease this flux. When autophagy is stimulated, SK1 relocalizes to endosomes/autophagosomes in neurons. Expression of a dominant-negative form of SK1 inhibits autophagosome synthesis. In a neuron model of Huntington's disease, pharmacologically inhibiting S1P-lyase protected neurons from mutant huntingtin-induced neurotoxicity. These results identify the S1P pathway as a novel regulator of neuronal autophagy and provide a new target for developing therapies for neurodegenerative disorders.