Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Glob Chang Biol ; 27(7): 1457-1469, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33347684

RESUMEN

We explored the implications of reaching the Paris Agreement Objective of limiting global warming to <2°C for the future winter distribution of the North Atlantic seabird community. We predicted and quantified current and future winter habitats of five North Atlantic Ocean seabird species (Alle alle, Fratercula arctica, Uria aalge, Uria lomvia and Rissa tridactyla) using tracking data for ~1500 individuals through resource selection functions based on mechanistic modeling of seabird energy requirements, and a dynamic bioclimate envelope model of seabird prey. Future winter distributions were predicted to shift with climate change, especially when global warming exceed 2°C under a "no mitigation" scenario, modifying seabird wintering hotspots in the North Atlantic Ocean. Our findings suggest that meeting Paris agreement objectives will limit changes in seabird selected habitat location and size in the North Atlantic Ocean during the 21st century. We thereby provide key information for the design of adaptive marine-protected areas in a changing ocean.


Asunto(s)
Cambio Climático , Ecosistema , Animales , Océano Atlántico , Humanos , Paris , Estaciones del Año
2.
Environ Sci Technol ; 54(21): 13619-13629, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33063513

RESUMEN

Despite the limited direct anthropogenic mercury (Hg) inputs in the circumpolar Arctic, elevated concentrations of methylmercury (MeHg) are accumulated in Arctic marine biota. However, the MeHg production and bioaccumulation pathways in these ecosystems have not been completely unraveled. We measured Hg concentrations and stable isotope ratios of Hg, carbon, and nitrogen in the feathers and blood of geolocator-tracked little auk Alle alle from five Arctic breeding colonies. The wide-range spatial mobility and tissue-specific Hg integration times of this planktivorous seabird allowed the exploration of their spatial (wintering quarters/breeding grounds) and seasonal (nonbreeding/breeding periods) MeHg exposures. An east-to-west increase of head feather Hg concentrations (1.74-3.48 µg·g-1) was accompanied by significant spatial trends of Hg isotope (particularly Δ199Hg: 0.96-1.13‰) and carbon isotope (δ13C: -20.6 to -19.4‰) ratios. These trends suggest a distinct mixing/proportion of MeHg sources between western North Atlantic and eastern Arctic regions. Higher Δ199Hg values (+0.4‰) in northern colonies indicate an accumulation of more photochemically impacted MeHg, supporting shallow MeHg production and bioaccumulation in high Arctic waters. The combination of seabird tissue isotopic analysis and spatial tracking helps in tracing the MeHg sources at various spatio-temporal scales.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Contaminantes Químicos del Agua , Animales , Regiones Árticas , Ecosistema , Monitoreo del Ambiente , Cadena Alimentaria , Mercurio/análisis , Estaciones del Año , Contaminantes Químicos del Agua/análisis
3.
Environ Res ; 183: 109194, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32036272

RESUMEN

Mining activities can cause adverse and long-lasting environmental impacts and detailed monitoring is therefore essential to assess the pollution status of mining impacted areas. Here we evaluated the efficacy of two predatory fish species (Gadus ogac i.e. Greenland cod and Myoxocephalus scorpius i.e. shorthorn sculpin) as biomonitors of mining derived metals (Pb, Zn, Cd and Hg) by measuring concentrations in blood, liver, muscle and otoliths along a distance gradient near the former Black Angel Pb-Zn mine (West Greenland). We detected metals in all tissues (except Cd and Hg in otoliths) and sculpin generally displayed higher concentrations than cod. For both species, concentrations were generally highest closest to the dominant pollution source(s) and gradually decreased away from the mine. The clearest gradient was observed for Pb in blood and liver (both species), and for Pb in otoliths (sculpin only). Similar to dissolved concentrations in seawater (but in contrast to bottom sediment), no significant decrease was found for Zn, Cd and Hg in any of the tissues. This demonstrates that by including tissues of blood (representing recent accumulation) and otolith (representing more long-term exposure signals) in the sampling collection, the temporal information on contaminant exposure and accumulation can be extended. We therefore conclude that both fish species are suitable as biomonitors near Arctic mine sites and, moreover, that blood and otoliths can serve as important supplementary monitoring tissues (in addition to liver and muscle traditionally sampled) as they provide extended temporal information on recent to long-term contaminant exposure.


Asunto(s)
Peces , Metales Pesados , Membrana Otolítica , Contaminantes del Agua , Animales , Regiones Árticas , Bioacumulación , Monitoreo del Ambiente , Groenlandia , Hígado , Metales , Metales Pesados/farmacocinética , Minería , Membrana Otolítica/química , Contaminantes del Agua/farmacocinética
4.
Environ Sci Technol ; 53(21): 12197-12206, 2019 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-31566367

RESUMEN

Increased economic activity in the Arctic may increase the risk of oil spills. Yet, little is known about the degradation of oil spills by solar radiation and the impact of nutrient limitation on oil biodegradation under Arctic conditions. We deployed adsorbents coated with thin oil films for up to 4 months in a fjord in SW Greenland to simulate and investigate in situ biodegradation and photo-oxidation of dispersed oil droplets. Oil compound depletion by dissolution, biodegradation, and photo-oxidation was untangled by gas chromatography-mass spectrometry-based oil fingerprinting. Biodegradation was limited by low nutrient concentrations, reaching 97% removal of nC13-26-alkanes only after 112 days. Sequencing of bacterial DNA showed the slow development of a bacterial biofilm on the oil films predominated by the known oil degrading bacteria Oleispira, Alkanindiges and Cycloclasticus. These taxa could be related to biodegradation of shorter-chain (≤C26) alkanes, longer-chain (≥C16) and branched alkanes, and polycyclic aromatic compounds (PACs), respectively. The combination of biodegradation, dissolution, and photo-oxidation depleted most PACs at substantially faster rates than the biodegradation of alkanes. In Arctic fjords during summer, nutrient limitation may severely delay oil biodegradation, but in the photic zone, photolytic transformation of PACs may play an important role.


Asunto(s)
Contaminación por Petróleo , Petróleo , Contaminantes Químicos del Agua , Alcanos , Regiones Árticas , Biodegradación Ambiental , Estuarios , Groenlandia , Agua de Mar , Solubilidad
5.
Environ Monit Assess ; 191(9): 538, 2019 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-31377862

RESUMEN

In this study, metal accumulation in green sea urchins (Strongylocentrotus droebachiensis) was investigated near the former Black Angel lead-zinc mine in Maarmorilik, West Greenland. Sea urchins (n = 9-11; 31-59 mm in diameter) were collected from three stations located at < 1 km, 5 km, and 12 km (reference site) away from the former mine site, respectively. After collection, tissue of the sea urchins was divided into gonads and remaining soft parts (viscera) before subjected to chemical analyses. Focus was on eight elements found in elevated concentrations in the mine waste (iron, copper, zinc, arsenic, silver, cadmium, mercury and lead). Sea urchins at the mine site contained significantly more copper, mercury and lead compared with the reference site for both the gonads and viscera, while the latter also contained significantly more iron, zinc and silver. Arsenic and cadmium were not significantly elevated in sea urchins at the mine site. Most elements were found in higher concentrations in the viscera compared with the gonads. For comprehensive monitoring of metal pollution at mine sites, a diverse selection of monitoring organisms is necessary. The study shows that green sea urchins accumulate selected metals and can be used as a monitoring organism for mining pollution, at least for iron, copper, zinc, silver, mercury and lead. However, the results also show that green sea urchins are less likely to reflect small environmental changes in loading of most metals (except iron, copper and silver) and for arsenic compared to suspension feeders such as blue mussels.


Asunto(s)
Monitoreo del Ambiente , Contaminación Ambiental , Plomo/análisis , Mytilus edulis/química , Strongylocentrotus/química , Zinc/análisis , Animales , Cadmio/análisis , Groenlandia , Minería
6.
Am Nat ; 189(5): 526-538, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28410026

RESUMEN

The duration of parental care in animals varies widely, from none to lifelong. Such variation is typically thought to represent a trade-off between growth and safety. Seabirds show wide variation in the age at which offspring leave the nest, making them ideal to test the idea that a trade-off between high energy gain at sea and high safety at the nest drives variation in departure age (Ydenberg's model). To directly test the model assumptions, we attached time-depth recorders to murre parents (fathers [which do all parental care at sea] and mothers; [Formula: see text] of each). Except for the initial mortality experienced by chicks departing from the colony, the mortality rate at sea was similar to the mortality rate at the colony. However, energy gained by the chick per day was ∼2.1 times as high at sea compared with at the colony because the father spent more time foraging, since he no longer needed to spend time commuting to and from the colony. Compared with the mother, the father spent ∼2.6 times as much time diving per day and dived in lower-quality foraging patches. We provide a simple model for optimal departure date based on only (1) the difference in growth rate at sea relative to the colony and (2) the assumption that transition mortality from one life-history stage to the other is size dependent. Apparently, large variation in the duration of parental care can arise simply as a result of variation in energy gain without any trade-off with safety.


Asunto(s)
Charadriiformes/fisiología , Ingestión de Energía , Conducta Alimentaria , Longevidad , Modelos Biológicos , Animales , Charadriiformes/crecimiento & desarrollo , Buceo , Ecosistema , Femenino , Masculino , Padres
7.
Proc Biol Sci ; 284(1849)2017 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-28202811

RESUMEN

In some arctic areas, marine-derived nutrients (MDN) resulting from fish migrations fuel freshwater and terrestrial ecosystems, increasing primary production and biodiversity. Less is known, however, about the role of seabird-MDN in shaping ecosystems. Here, we examine how the most abundant seabird in the North Atlantic, the little auk (Alle alle), alters freshwater and terrestrial ecosystems around the North Water Polynya (NOW) in Greenland. We compare stable isotope ratios (δ15N and δ13C) of freshwater and terrestrial biota, terrestrial vegetation indices and physical-chemical properties, productivity and community structure of fresh waters in catchments with and without little auk colonies. The presence of colonies profoundly alters freshwater and terrestrial ecosystems by providing nutrients and massively enhancing primary production. Based on elevated δ15N in MDN, we estimate that MDN fuels more than 85% of terrestrial and aquatic biomass in bird influenced systems. Furthermore, by using different proxies of bird impact (colony distance, algal δ15N) it is possible to identify a gradient in ecosystem response to increasing bird impact. Little auk impact acidifies the freshwater systems, reducing taxonomic richness of macroinvertebrates and truncating food webs. These results demonstrate that the little auk acts as an ecosystem engineer, transforming ecosystems across a vast region of Northwest Greenland.


Asunto(s)
Charadriiformes , Ecosistema , Cadena Alimentaria , Animales , Regiones Árticas , Groenlandia
8.
Glob Chang Biol ; 23(9): 3770-3780, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28387042

RESUMEN

Global warming is a nonlinear process, and temperature may increase in a stepwise manner. Periods of abrupt warming can trigger persistent changes in the state of ecosystems, also called regime shifts. The responses of organisms to abrupt warming and associated regime shifts can be unlike responses to periods of slow or moderate change. Understanding of nonlinearity in the biological responses to climate warming is needed to assess the consequences of ongoing climate change. Here, we demonstrate that the population dynamics of a long-lived, wide-ranging marine predator are associated with changes in the rate of ocean warming. Data from 556 colonies of black-legged kittiwakes Rissa tridactyla distributed throughout its breeding range revealed that an abrupt warming of sea-surface temperature in the 1990s coincided with steep kittiwake population decline. Periods of moderate warming in sea temperatures did not seem to affect kittiwake dynamics. The rapid warming observed in the 1990s may have driven large-scale, circumpolar marine ecosystem shifts that strongly affected kittiwakes through bottom-up effects. Our study sheds light on the nonlinear response of a circumpolar seabird to large-scale changes in oceanographic conditions and indicates that marine top predators may be more sensitive to the rate of ocean warming rather than to warming itself.


Asunto(s)
Cambio Climático , Cadena Alimentaria , Océanos y Mares , Animales , Aves , Clima , Ecosistema , Dinámica Poblacional
9.
Biol Lett ; 12(11)2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27807248

RESUMEN

The ongoing decline of sea ice threatens many Arctic taxa, including the ivory gull. Understanding how ice-edges and ice concentrations influence the distribution of the endangered ivory gulls is a prerequisite to the implementation of adequate conservation strategies. From 2007 to 2013, we used satellite transmitters to monitor the movements of 104 ivory gulls originating from Canada, Greenland, Svalbard-Norway and Russia. Although half of the positions were within 41 km of the ice-edge (75% within 100 km), approximately 80% were on relatively highly concentrated sea ice. Ivory gulls used more concentrated sea ice in summer, when close to their high-Arctic breeding ground, than in winter. The best model to explain the distance of the birds from the ice-edge included the ice concentration within approximately 10 km, the month and the distance to the colony. Given the strong links between ivory gull, ice-edge and ice concentration, its conservation status is unlikely to improve in the current context of sea-ice decline which, in turn, will allow anthropogenic activities to develop in regions that are particularly important for the species.


Asunto(s)
Migración Animal , Charadriiformes , Cubierta de Hielo , Animales , Regiones Árticas , Ecosistema , Especies en Peligro de Extinción , Tecnología de Sensores Remotos , Estaciones del Año
10.
Environ Res ; 133: 304-11, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24991745

RESUMEN

The former Black Angel lead-zinc mine in Maarmorilik, West Greenland, is a historic example of how mining activity may result in a significant impact on the surrounding fjord system in terms of elevated concentrations of especially lead (Pb) and zinc (Zn) in seawater, sediments and surrounding biota. In order to shed light on the present contamination and possible effects in the fjord we initiated a range of studies including a pilot study on gill and liver morphology of common sculpins (Myoxocephalus scorpius) around Maarmorilik. Sculpins were caught and sampled at five different stations known to represent a gradient of Pb concentrations. Fish livers from all specimens were analyzed for relevant elements in the area: Fe, Zn, As, Cu, Se, Cd, Pb, Ag, Hg, Co and Ni. Lead, As and Hg showed significant differences among the five stations. For 20% of the sculpins, Hg concentrations were in the range of lowest observed effect dose (LOED) of 0.1-0.5 µg/g ww for toxic threshold on reproduction and subclinical endpoints. Likewise LOEDs for tissue lesions, LOEDs for biochemistry, growth, survival and reproduction were exceeded for Cd (0.42-1.8 µg/g ww) and for As (11.6 µg/g ww) in 28% and 85% of the sculpins, respectively. Similar to this, the no observed effect dose (NOED) for biochemistry was exceeded for Pb (0.32 µg/g ww) and for growth, mortality and reproduction for Zn (60-68 µg/g ww) in 33% and 24% of the sculpins, respectively. For all sculpins, females were significantly larger than males and for five of the elements (Fe, Co, Ni, Cu, Se) females had higher concentrations. The chronic lesions observed in liver (mononuclear cell infiltrates, necrosis, vacuolar hepatocytes, portal fibrosis, bile duct hyperplasia, active melanomacrophage centers) and gills (fusion and edema of secondary lamellae, laminar telangiectasis, mononuclear cell infiltrates, blebs) were similar to those in the literature studies for both wild and laboratory exposed sculpins and other fish species carrying similar or higher Hg concentrations. Ignoring sex and size, specimens with hepatic cell infiltrates had the highest concentrations of most elements, a relation that was also found for gill telangiectasis and Hg (all p < 0.05). When controlling for sex and size, the prevalence of vacuolar hepatocytes and endoparasites was significantly highest at the three most contaminated stations and similar differences were found for liver necrosis. We suggest that beside exposure to mining-related elements, other environmental factors, such as parasites, might be co-factors in the development of the observed liver and gill lesions. Therefore, sculpin liver and gill pathology are likely to be suitable health indicators when biomonitoring gradients of mining and other element related activity effects; while a larger study is required to fully evaluate the relationships.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Ambientales/análisis , Peces , Hígado/química , Animales , Regiones Árticas , Tamaño Corporal , Femenino , Branquias/patología , Groenlandia , Hígado/patología , Masculino , Minería , Factores Sexuales
11.
Commun Biol ; 7(1): 307, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491140

RESUMEN

The child-like question of why birds sing in the morning is difficult to answer, especially in polar regions. There, in summer animals live without the time constraints of daylight, and little is known about the rhythmicity of their routines. Moreover, in situ monitoring of animal behavior in remote areas is challenging and rare. Here, we use audio data from Greenland to show that a colony of a key Arctic-breeding seabird, the little auk (Alle alle), erupts with acoustic excitement at night in August, under the midnight sun. We demonstrate that the acoustic activity cycle is consistent with previous direct observations of the feeding and attendance patterns of the little auk. We interpret this pattern as reflecting their foraging activities, but further investigation on fledging and predators is needed. The study demonstrates that acoustic monitoring is a promising alternative to otherwise demanding manual observations of bird colonies in remote Arctic areas.


Asunto(s)
Charadriiformes , Humanos , Animales , Aves , Regiones Árticas , Conducta Animal , Groenlandia
12.
Mar Pollut Bull ; 199: 115948, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38141583

RESUMEN

The Environment & Oil Spill Response tool (EOS), supports oil spill response planning and decision making. This tool is developed on a research basis, and is an index based, generic and open-source analytic tool, which environmentally can optimise the choice of oil spill response methods for a given spill situation and for a given sea area with respect to environment and nature. The tool is not linked to a particular oil spill simulation model, although it is recommended using oil spill simulation models to have detailed data available for the analysis. The EOS tool consists of an Excel workbook with formulas for calculations and scores followed by screening through decision trees. As case for the EOS tool proof-of-concept, the area of Store Hellefiskebanke, West Greenland, is used. The tool can be downloaded from the Aarhus University home page as a free-of-charge application and is accompanied by a handbook for guidance.


Asunto(s)
Contaminación por Petróleo , Humanos , Regiones Árticas , Groenlandia
13.
Environ Pollut ; 343: 123110, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38086506

RESUMEN

Mercury (Hg) is a metallic trace element toxic for humans and wildlife that can originate from natural and anthropic sources. Hg spatial gradients have been found in seabirds from the Arctic and other oceans, suggesting contrasting toxicity risks across regions. Selenium (Se) plays a protective role against Hg toxicity, but its spatial distribution has been much less investigated than that of Hg. From 2015 to 2017, we measured spatial co-exposure of Hg and Se in blood samples of two seabird species, the Brünnich's guillemot (Uria lomvia) and the black-legged kittiwake (Rissa tridactyla) from 17 colonies in the Arctic and subarctic regions, and we calculated their molar ratios (Se:Hg), as a measure of Hg sequestration by Se and, therefore, of Hg exposure risk. We also evaluated concentration differences between species and ocean basins (Pacific-Arctic and Atlantic-Arctic), and examined the influence of trophic ecology on Hg and Se concentrations using nitrogen and carbon stable isotopes. In the Atlantic-Arctic ocean, we found a negative west-to-east gradient of Hg and Se for guillemots, and a positive west-to-east gradient of Se for kittiwakes, suggesting that these species are better protected from Hg toxicity in the European Arctic. Differences in Se gradients between species suggest that they do not follow environmental Se spatial variations. This, together with the absence of a general pattern for isotopes influence on trace element concentrations, could be due to foraging ecology differences between species. In both oceans, the two species showed similar Hg concentrations, but guillemots showed lower Se concentrations and Se:Hg than kittiwakes, suggesting a higher Hg toxicity risk in guillemots. Within species, neither Hg, nor Se or Se:Hg differed between both oceans. Our study highlights the importance of considering Se together with Hg, along with different species and regions, when evaluating Hg toxic effects on marine predators in international monitoring programs.


Asunto(s)
Charadriiformes , Mercurio , Selenio , Oligoelementos , Animales , Humanos , Mercurio/análisis , Isótopos de Carbono , Regiones Árticas , Monitoreo del Ambiente
14.
Mar Pollut Bull ; 188: 114659, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36738727

RESUMEN

Chemical dispersion is an oil spill response strategy where dispersants are sprayed onto the oil slick to enhance oil dispersion into the water. However, accidental application could expose seabirds to dispersants, thereby negatively affecting their plumage. To understand the possible impacts on seabirds, feathers from common eider (Somateria mollissima) and thick-billed murre (Uria lomvia) were exposed to different dosages of the dispersant Dasic Slickgone NS. For all exposure dosages the feathers increased in weight, and mostly for common eider. Analysing the feather microstructure, e.g., the Amalgamation Index, showed that larger damages were found on thick-billed murre than common eider. A no-sinking limit was established at 0.109 ml/m2. Relating this value to desktop simulations of potential sea-surface dosages in real-life situations, and to published accounts of response operations, showed that the limit is likely to be exceeded. Thus, our results show that chemical dispersants in realistic dosages could impact seabirds.


Asunto(s)
Charadriiformes , Contaminación por Petróleo , Contaminantes Químicos del Agua , Animales , Plumas/química , Regiones Árticas , Agua/análisis , Contaminación por Petróleo/análisis , Patos , Charadriiformes/fisiología , Contaminantes Químicos del Agua/análisis
15.
J Environ Radioact ; 257: 107080, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36446183

RESUMEN

Indoor radon and its decay products are the primary sources of the population's exposure to background ionizing radiation. Radon decay products are one of the leading causes of lung cancer, with a higher lung cancer risk for smokers due to the synergistic effects of radon decay products and cigarette smoking. A total of 459 year-long radon measurements in 257 detached and semi-detached residential homes in southwest and south Greenland were carried out, and a dose assessment for adults was performed. The annual arithmetic and geometric means of indoor radon concentrations was 10.5 ± 0.2 Bq m-3 and 8.0 ± 2.3 Bq m-3 in Nuuk, 139.0 ± 1.0 Bq m-3 and 97.3 ± 2.1 Bq m-3 in Narsaq, and 42.1 ± 0.7 Bq m-3 and 22.0 ± 3.1 Bq m-3 in Qaqortoq. Arithmetic and geometric mean radon concentration of 79.0 Bq m-3 and 50.3 Bq m-3 were estimated for adult, person-weighted living in south Greenland. The total number of detached and semi-detached residential homes where indoor radon is exceeding 100 Bq m-3, 200 Bq m-3, and 300 Bq m-3 is 37 homes (15.0%), 13 homes (5.2%), and 8 homes (3.2%), respectively. A positive correlation between indoor air radon concentrations and underlying geology was observed. The indoor radon contribution to the annual inhalation effective dose to an average adult was 0.5 mSv in Nuuk, 6.5 mSv in Narsaq, 2.0 mSv in Qaqortoq, and 4.0 mSv for south Greenland adult person weighted. The estimated annual average effective dose to adults in Narsaq is higher than the world's average annual effective dose of 1.3 mSv due to inhalation of indoor radon. Cost-efficient mitigation methods exist to reduce radon in existing buildings, and to prevent radon entry into new buildings.


Asunto(s)
Contaminantes Radiactivos del Aire , Contaminación del Aire Interior , Monitoreo de Radiación , Radón , Humanos , Radón/análisis , Hijas del Radón/análisis , Contaminación del Aire Interior/análisis , Groenlandia , Monitoreo de Radiación/métodos , Contaminantes Radiactivos del Aire/análisis , Vivienda
16.
Sci Total Environ ; 812: 152373, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-34919929

RESUMEN

This review provides an overview of environmental studies and monitoring at mine sites in Greenland since the first environmental studies were conducted in the early 1970s. Mining at three legacy mine sites in Greenland (Ivittuut, Mestersvig and Maarmorilik) caused significant metal pollution, mostly with lead and zinc, due to lack of adequate environmental studies and regulation. These legacy mine sites have later served as study areas for development of methods for environmental monitoring, which can also be applied to other sites. The review describes the most significant mines in Greenland's mining history together with procedures for conducting the environmental monitoring work. A comprehensive description is provided on the research results and development of monitoring practices during the past 50 years for assessing dispersion, bioaccumulation and toxicological effects of pollutants in both the marine and terrestrial environment. Further, the current practices for sample preparation, chemical analyses and storage of samples and data are described. From the studies it is clear that monitoring needs to be site- and mine-specific, adaptive, diverse and take conditions unique to the Arctic into account, such as permafrost, seasonal drainage and fjord stratification dynamics. Based on the results, lessons learned for future monitoring programs are given. Moreover, spatial and temporal trends of the legacy pollution at the Greenland mine sites are discussed. Finally, it is shown how research and monitoring results have been applied to regulate mining activities in Greenland to minimise the environmental impact, and some future perspectives are presented. Many of the results and conclusions in the review are considered applicable to environmental monitoring of mining and other industrial activities in other areas than Greenland, both inside and outside of the Arctic.


Asunto(s)
Monitoreo del Ambiente , Minería , Contaminación Ambiental , Groenlandia , Zinc/análisis
17.
Sci Total Environ ; 806(Pt 1): 150508, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34844309

RESUMEN

Polonium-210 (210Po) is a radionuclide sentinel as it bioaccumulates in marine organisms, thereby being the main contributor to committed dietary doses in seafood consumers. Although seafood and marine mammals are an important part of the traditional Inuit diet, there is a general lack of information on the 210Po concentrations in the Greenlandic marine food chain leading to the human consumer. Here, we determine background 210Po concentrations in edible parts of different marine organisms from Greenland and provide a dose assessment. Blue mussels (Mytilus edulis), organs of ringed seal (Pusa hispida) and polar bear (Ursus maritimus) displayed significantly elevated 210Po concentrations in respect to all other studied organisms (p < 0.001). 210Po concentrations ranged from 0.02 Bq kg-1, w.w. in Greenland halibut (Reinhardtius hippoglossoides) muscle to 78 Bq kg-1, w.w. and 202 Bq kg-1, w.w. in ringed seal muscle and kidneys, respectively. 210Po concentration ratio for edible parts increases in the order bladderwrack (Fucus Vesiculosus), northern shrimp (Pandalus borealis), blue mussels, and from fish species to ringed seal and polar bear. 210Po distribution in fish, ringed seal, and polar bear follows a general pattern, the lowest concentrations were in muscle, and the highest concentrations were in the organs involved in metabolism. The derived 210Po annual absorbed dose in edible parts of studied marine organisms are several orders of magnitude lower than the recommended dose rate screening value of 10 µGy h-1. Effective doses from intake of 210Po to Greenland average children (1.4 mSv y-1), and high seafood and marine mammal consumers (2 mSv y-1 for adults and 3.6 mSv y-1 for children) are higher than the world average annual effective dose due to ingestion of naturally occurring radionuclides.


Asunto(s)
Polonio , Contaminantes Radiactivos del Agua , Animales , Biota , Groenlandia , Humanos , Polonio/análisis , Contaminantes Radiactivos del Agua/análisis
18.
Curr Biol ; 32(17): 3800-3807.e3, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-35870447

RESUMEN

Density-dependent prey depletion around breeding colonies has long been considered an important factor controlling the population dynamics of colonial animals.1-4 Ashmole proposed that as seabird colony size increases, intraspecific competition leads to declines in reproductive success, as breeding adults must spend more time and energy to find prey farther from the colony.1 Seabird colony size often varies over several orders of magnitude within the same species and can include millions of individuals per colony.5,6 As such, colony size likely plays an important role in determining the individual behavior of its members and how the colony interacts with the surrounding environment.6 Using tracking data from murres (Uria spp.), the world's most densely breeding seabirds, we show that the distribution of foraging-trip distances scales to colony size0.33 during the chick-rearing stage, consistent with Ashmole's halo theory.1,2 This pattern occurred across colonies varying in size over three orders of magnitude and distributed throughout the North Atlantic region. The strong relationship between colony size and foraging range means that the foraging areas of some colonial species can be estimated from colony sizes, which is more practical to measure over a large geographic scale. Two-thirds of the North Atlantic murre population breed at the 16 largest colonies; by extrapolating the predicted foraging ranges to sites without tracking data, we show that only two of these large colonies have significant coverage as marine protected areas. Our results are an important example of how theoretical models, in this case, Ashmole's version of central-place-foraging theory, can be applied to inform conservation and management in colonial breeding species.


Asunto(s)
Charadriiformes , Animales , Ecosistema , Dinámica Poblacional , Reproducción
19.
Sci Total Environ ; 844: 156944, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-35752241

RESUMEN

Since the last Arctic Monitoring and Assessment Programme (AMAP) effort to review biological effects of mercury (Hg) on Arctic biota in 2011 and 2018, there has been a considerable number of new Arctic bird studies. This review article provides contemporary Hg exposure and potential health risk for 36 Arctic seabird and shorebird species, representing a larger portion of the Arctic than during previous AMAP assessments now also including parts of the Russian Arctic. To assess risk to birds, we used Hg toxicity benchmarks established for blood and converted to egg, liver, and feather tissues. Several Arctic seabird populations showed Hg concentrations that exceeded toxicity benchmarks, with 50 % of individual birds exceeding the "no adverse health effect" level. In particular, 5 % of all studied birds were considered to be at moderate or higher risk to Hg toxicity. However, most seabirds (95 %) were generally at lower risk to Hg toxicity. The highest Hg contamination was observed in seabirds breeding in the western Atlantic and Pacific Oceans. Most Arctic shorebirds exhibited low Hg concentrations, with approximately 45 % of individuals categorized at no risk, 2.5 % at high risk category, and no individual at severe risk. Although the majority Arctic-breeding seabirds and shorebirds appeared at lower risk to Hg toxicity, recent studies have reported deleterious effects of Hg on some pituitary hormones, genotoxicity, and reproductive performance. Adult survival appeared unaffected by Hg exposure, although long-term banding studies incorporating Hg are still limited. Although Hg contamination across the Arctic is considered low for most bird species, Hg in combination with other stressors, including other contaminants, diseases, parasites, and climate change, may still cause adverse effects. Future investigations on the global impact of Hg on Arctic birds should be conducted within a multi-stressor framework. This information helps to address Article 22 (Effectiveness Evaluation) of the Minamata Convention on Mercury as a global pollutant.


Asunto(s)
Mercurio , Animales , Regiones Árticas , Aves , Monitoreo del Ambiente , Plumas/química , Humanos , Mercurio/análisis
20.
Nat Commun ; 12(1): 4475, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34294719

RESUMEN

High Arctic ecosystems and Indigenous livelihoods are tightly linked and exposed to climate change, yet assessing their sensitivity requires a long-term perspective. Here, we assess the vulnerability of the North Water polynya, a unique seaice ecosystem that sustains the world's northernmost Inuit communities and several keystone Arctic species. We reconstruct mid-to-late Holocene changes in sea ice, marine primary production, and little auk colony dynamics through multi-proxy analysis of marine and lake sediment cores. Our results suggest a productive ecosystem by 4400-4200 cal yrs b2k coincident with the arrival of the first humans in Greenland. Climate forcing during the late Holocene, leading to periods of polynya instability and marine productivity decline, is strikingly coeval with the human abandonment of Greenland from c. 2200-1200 cal yrs b2k. Our long-term perspective highlights the future decline of the North Water ecosystem, due to climate warming and changing sea-ice conditions, as an important climate change risk.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA