Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Physiol Lung Cell Mol Physiol ; 300(2): L176-84, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21056958

RESUMEN

Ozone causes persistent airway hyperreactivity in humans and animals. One day after ozone exposure, airway hyperreactivity is mediated by release of eosinophil major basic protein that inhibits neuronal M(2) muscarinic receptors, resulting in increased acetylcholine release and increased smooth muscle contraction in guinea pigs. Three days after ozone, IL-1ß, not eosinophils, mediates ozone-induced airway hyperreactivity, but the mechanism at this time point is largely unknown. IL-1ß increases NGF and the tachykinin substance P, both of which are involved in neural plasticity. These experiments were designed to test whether there is a role for NGF and tachykinins in sustained airway hyperreactivity following a single ozone exposure. Guinea pigs were exposed to filtered air or ozone (2 parts per million, 4 h). In anesthetized and vagotomized animals, ozone potentiated vagally mediated airway hyperreactivity 24 h later, an effect that was sustained over 3 days. Pretreatment with antibody to NGF completely prevented ozone-induced airway hyperreactivity 3 days, but not 1 day, after ozone and significantly reduced the number of substance P-positive airway nerve bundles. Three days after ozone, NK(1) and NK(2) receptor antagonists also blocked this sustained hyperreactivity. Although the effect of inhibiting NK(2) receptors was independent of ozone, the NK(1) receptor antagonist selectively blocked vagal hyperreactivity 3 days after ozone. These data confirm mechanisms of ozone-induced airway hyperreactivity change over time and demonstrate 3 days after ozone that there is an NGF-mediated role for substance P, or another NK(1) receptor agonist, that enhances acetylcholine release and was not present 1 day after ozone.


Asunto(s)
Hiperreactividad Bronquial/etiología , Hiperreactividad Bronquial/fisiopatología , Factor de Crecimiento Nervioso/fisiología , Ozono/toxicidad , Sustancia P/fisiología , Contaminantes Atmosféricos/toxicidad , Animales , Hiperreactividad Bronquial/prevención & control , Broncoconstricción/efectos de los fármacos , Broncoconstricción/fisiología , Modelos Animales de Enfermedad , Femenino , Cobayas , Humanos , Pulmón/efectos de los fármacos , Pulmón/inervación , Pulmón/fisiopatología , Masculino , Modelos Biológicos , Factor de Crecimiento Nervioso/antagonistas & inhibidores , Antagonistas del Receptor de Neuroquinina-1 , Ozono/administración & dosificación , Receptores de Neuroquinina-1/fisiología , Receptores de Neuroquinina-2/antagonistas & inhibidores , Receptores de Neuroquinina-2/fisiología , Factores de Tiempo , Nervio Vago/fisiopatología
2.
Acad Med ; 95(9S A Snapshot of Medical Student Education in the United States and Canada: Reports From 145 Schools): S418-S421, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33626734
3.
Clin Chest Med ; 33(2): 211-7, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22640841

RESUMEN

The pathogenesis of bronchiectasis cannot be explained by a single cause. The current model is a vicious cycle of inflammation and altered response to infection. This cycle depends not only on the type and virulence of the pathogen but also on the host immune response. In this response, too much or too little can damage the airways or fail to clear the pathogen, thus increasing the probability of further infection. This review describes the changes and advancement in the pathogenesis of bronchiectasis, including mechanisms of injury and host factors.


Asunto(s)
Bronquiectasia/etiología , Bronquiectasia/patología , Bronquiectasia/diagnóstico por imagen , Humanos , Infecciones/inmunología , Inflamación/complicaciones , Tomografía Computarizada por Rayos X
4.
Br J Pharmacol ; 163(1): 44-52, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21198547

RESUMEN

In the lungs, parasympathetic nerves provide the dominant control of airway smooth muscle with release of acetylcholine onto M3 muscarinic receptors. Treatment of airway disease with anticholinergic drugs that block muscarinic receptors began over 2000 years ago. Pharmacologic data all indicated that antimuscarinic drugs should be highly effective in asthma but clinical results were mixed. Thus, with the discovery of effective ß-adrenergic receptor agonists the use of muscarinic antagonists declined. Lack of effectiveness of muscarinic antagonists is due to a variety of factors including unwanted side effects (ranging from dry mouth to coma) and the discovery of additional muscarinic receptor subtypes in the lungs with sometimes competing effects. Perhaps the most important problem is ineffective dosing due to poorly understood differences between routes of administration and no effective way of testing whether antagonists block receptors stimulated physiologically by acetylcholine. Newer muscarinic receptor antagonists are being developed that address the problems of side effects and receptor selectivity that appear to be quite promising in the treatment of asthma and chronic obstructive pulmonary disease.


Asunto(s)
Antagonistas Muscarínicos/farmacología , Antagonistas Muscarínicos/uso terapéutico , Animales , Asma/tratamiento farmacológico , Descubrimiento de Drogas , Humanos , Antagonistas Muscarínicos/efectos adversos , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA