Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Development ; 147(19)2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-32591430

RESUMEN

Pax7 expression marks stem cells in developing skeletal muscles and adult satellite cells during homeostasis and muscle regeneration. The genetic determinants that control the entrance into the myogenic program and the appearance of PAX7+ cells during embryogenesis are poorly understood. SIX homeoproteins are encoded by the sine oculis-related homeobox Six1-Six6 genes in vertebrates. Six1, Six2, Six4 and Six5 are expressed in the muscle lineage. Here, we tested the hypothesis that Six1 and Six4 could participate in the genesis of myogenic stem cells. We show that fewer PAX7+ cells occupy a satellite cell position between the myofiber and its associated basal lamina in Six1 and Six4 knockout mice (s1s4KO) at E18. However, PAX7+ cells are detected in remaining muscle masses present in the epaxial region of the double mutant embryos and are able to divide and contribute to muscle growth. To further characterize the properties of s1s4KO PAX7+ cells, we analyzed their transcriptome and tested their properties after transplantation in adult regenerating tibialis anterior muscle. Mutant stem cells contribute to hypotrophic myofibers that are not innervated but retain the ability to self-renew.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Factor de Transcripción PAX7/metabolismo , Transactivadores/metabolismo , Animales , Proteínas de Homeodominio/genética , Ratones , Ratones Noqueados , Desarrollo de Músculos/genética , Desarrollo de Músculos/fisiología , Músculo Esquelético/embriología , Músculo Esquelético/metabolismo , Factor de Transcripción PAX7/genética , Células Madre/citología , Células Madre/metabolismo , Transactivadores/genética
2.
J Cell Physiol ; 237(8): 3328-3337, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35621301

RESUMEN

Facioscapulohumeral muscular dystrophy (FSHD) is a genetic disease associated with ectopic expression of the DUX4 gene in skeletal muscle. Muscle degeneration in FSHD is accompanied by muscle tissue replacement with fat and connective tissue. Expression of DUX4 in myoblasts stimulates mesenchymal stem cells (MSC) migration via the CXCR4-CXCL12 axis. MSCs participate in adipose and connective tissue formation and can contribute to fibrosis. Here we studied the interaction between myoblasts and MSCs and the consequences of this interaction in the FSHD context. We used cell motility assays and coculture of MSCs with myoblasts to study their mutual effects on cell migration, differentiation, proliferation, and extracellular matrix formation. The growth medium conditioned by FSHD myoblasts stimulated MSCs migration 1.6-fold (p < 0.04) compared to nonconditioned medium. Blocking the CXCL12-CXCR4 axis with the CXCR4 inhibitor (AMD3100) or neutralizing antibodies to CXCL12 abolished this effect. FSHD myoblasts stimulated MSC proliferation 1.5-2 times (p < 0.05) compared to control myoblasts, while the presence of MSCs impaired myoblast differentiation. Under inflammatory conditions, medium conditioned by FSHD myoblasts stimulated collagen secretion by MSCs 2.2-fold as compared to the nonconditioned medium, p < 0.03. FSHD myoblasts attract MSCs via the CXCL12-CXCR4 axis, stimulate MSC proliferation and collagen secretion by MSCs. Interaction between MSCs and FSHD myoblasts accounts for several important aspects of FSHD pathophysiology. The CXCL12-CXCR4 axis may serve as a potential target to improve the state of the diseased muscles.


Asunto(s)
Células Madre Mesenquimatosas , Distrofia Muscular Facioescapulohumeral , Mioblastos , Movimiento Celular , Células Cultivadas , Quimiocina CXCL12/metabolismo , Proteínas de Homeodominio/genética , Humanos , Células Madre Mesenquimatosas/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapulohumeral/genética , Distrofia Muscular Facioescapulohumeral/metabolismo , Mioblastos/metabolismo , Fenotipo , Receptores CXCR4/metabolismo
3.
Acta Neuropathol ; 144(6): 1157-1170, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36197469

RESUMEN

Oculopharyngeal muscular dystrophy (OPMD) is a rare muscle disease characterized by an onset of weakness in the pharyngeal and eyelid muscles. The disease is caused by the extension of a polyalanine tract in the Poly(A) Binding Protein Nuclear 1 (PABPN1) protein leading to the formation of intranuclear inclusions or aggregates in the muscle of OPMD patients. Despite numerous studies stressing the deleterious role of nuclear inclusions in cellular and animal OPMD models, their exact contribution to human disease is still unclear. In this study, we used a large and unique collection of human muscle biopsy samples to perform an in-depth analysis of PABPN1 aggregates in relation to age, genotype and muscle status with the final aim to improve our understanding of OPMD physiopathology. Here we demonstrate that age and genotype influence PABPN1 aggregates: the percentage of myonuclei containing PABPN1 aggregates increases with age and the chaperone HSP70 co-localize more frequently with PABPN1 aggregates with a larger polyalanine tract. In addition to the previously described PRMT1 and HSP70 co-factors, we identified new components of PABPN1 aggregates including GRP78/BiP, RPL24 and p62. We also observed that myonuclei containing aggregates are larger than myonuclei without. When comparing two muscles from the same patient, a similar amount of aggregates is observed in different muscles, except for the pharyngeal muscle where fewer aggregates are observed. This could be due to the peculiar nature of this muscle which has a low level of PAPBN1 and contains regenerating fibers. To confirm the fate of PABPN1 aggregates in a regenerating muscle, we generated a xenograft model by transplanting human OPMD muscle biopsy samples into the hindlimb of an immunodeficient mouse. Xenografts from subjects with OPMD displayed regeneration of human myofibers and PABPN1 aggregates were rapidly present-although to a lower extent-after muscle fiber regeneration. Our data obtained on human OPMD samples add support to the dual non-exclusive models in OPMD combining toxic PABPN1 intranuclear inclusions together with PABPN1 loss of function which altogether result in this late-onset and muscle selective disease.


Asunto(s)
Distrofia Muscular Oculofaríngea , Humanos , Ratones , Animales , Distrofia Muscular Oculofaríngea/genética , Distrofia Muscular Oculofaríngea/patología , Cuerpos de Inclusión Intranucleares/metabolismo , Cuerpos de Inclusión Intranucleares/patología , Xenoinjertos , Modelos Animales de Enfermedad , Chaperonas Moleculares/metabolismo , Proteína I de Unión a Poli(A)/genética , Proteína I de Unión a Poli(A)/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas Represoras/metabolismo
4.
FASEB J ; 35(9): e21819, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34405910

RESUMEN

Skeletal muscle contains multiple cell types that work together to maintain tissue homeostasis. Among these, satellite cells (SC) and fibroadipogenic progenitors cells (FAPs) are the two main stem cell pools. Studies of these cells using animal models have shown the importance of interactions between these cells in repair of healthy muscle, and degeneration of dystrophic muscle. Due to the unavailability of fresh patient muscle biopsies, similar analysis of interactions between human FAPs and SCs is limited especially among the muscular dystrophy patients. To address this issue here we describe a method that allows the use of frozen human skeletal muscle biopsies to simultaneously isolate and grow SCs and FAPs from healthy or dystrophic patients. We show that while the purified SCs differentiate into mature myotubes, purified FAPs can differentiate into adipocytes or fibroblasts demonstrating their multipotency. We find that these FAPs can be immortalized and the immortalized FAPs (iFAPs) retain their multipotency. These approaches open the door for carrying out personalized analysis of patient FAPs and interactions with the SCs that lead to muscle loss.


Asunto(s)
Biopsia , Separación Celular , Criopreservación , Músculo Esquelético/citología , Músculo Esquelético/patología , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/patología , Adolescente , Adulto , Anciano , Diferenciación Celular , Femenino , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Células Madre Multipotentes/citología , Células Madre Multipotentes/patología , Distrofia Muscular de Duchenne/patología , Adulto Joven
5.
Exp Cell Res ; 409(1): 112908, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34736920

RESUMEN

For decades now, cell transplantation has been considered a possible therapeutic strategy for muscular dystrophy, but failures have largely outnumbered success or at least encouraging outcomes. In this review we will briefly recall the history of cell transplantation, discuss the peculiar features of skeletal muscle, and dystrophic skeletal muscle in particular, that make the procedure complicated and inefficient. As there are many recent and exhaustive reviews on the various myogenic cell types that have been or will be transplanted, we will only briefly describe them and refer the reader to these reviews. Finally, we will discuss possible strategies to overcome the hurdles that prevent biological efficacy and hence clinical success.


Asunto(s)
Trasplante de Células/métodos , Músculo Esquelético/citología , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/terapia , Animales , Diferenciación Celular/fisiología , Humanos , Desarrollo de Músculos/fisiología
6.
Hum Mol Genet ; 28(10): 1694-1708, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30649389

RESUMEN

Oculopharyngeal muscular dystrophy (OPMD) is a rare late onset genetic disease leading to ptosis, dysphagia and proximal limb muscles at later stages. A short abnormal (GCN) triplet expansion in the polyA-binding protein nuclear 1 (PABPN1) gene leads to PABPN1-containing aggregates in the muscles of OPMD patients. Here we demonstrate that treating mice with guanabenz acetate (GA), an FDA-approved antihypertensive drug, reduces the size and number of nuclear aggregates, improves muscle force, protects myofibers from the pathology-derived turnover and decreases fibrosis. GA targets various cell processes, including the unfolded protein response (UPR), which acts to attenuate endoplasmic reticulum (ER) stress. We demonstrate that GA increases both the phosphorylation of the eukaryotic translation initiation factor 2α subunit and the splicing of Xbp1, key components of the UPR. Altogether these data show that modulation of protein folding regulation is beneficial for OPMD and promote the further development of GA or its derivatives for treatment of OPMD in humans. Furthermore, they support the recent evidences that treating ER stress could be therapeutically relevant in other more common proteinopathies.


Asunto(s)
Guanabenzo/farmacología , Distrofia Muscular Oculofaríngea/tratamiento farmacológico , Proteína I de Unión a Poli(A)/genética , Proteína 1 de Unión a la X-Box/genética , Empalme Alternativo/efectos de los fármacos , Empalme Alternativo/genética , Animales , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico/efectos de los fármacos , Fibrosis/tratamiento farmacológico , Fibrosis/genética , Fibrosis/patología , Humanos , Ratones , Distrofia Muscular Oculofaríngea/genética , Distrofia Muscular Oculofaríngea/patología , Fosforilación/efectos de los fármacos , Agregado de Proteínas/efectos de los fármacos , Agregado de Proteínas/genética , Pliegue de Proteína , Respuesta de Proteína Desplegada/efectos de los fármacos
7.
Pharmacol Res ; 165: 105421, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33429034

RESUMEN

High-throughput screening identified isoxazoles as potent but metabolically unstable inhibitors of the mitochondrial permeability transition pore (PTP). Here we have studied the effects of a metabolically stable triazole analog, TR001, which maintains the PTP inhibitory properties with an in vitro potency in the nanomolar range. We show that TR001 leads to recovery of muscle structure and function of sapje zebrafish, a severe model of Duchenne muscular dystrophy (DMD). PTP inhibition fully restores the otherwise defective respiration in vivo, allowing normal development of sapje individuals in spite of lack of dystrophin. About 80 % sapje zebrafish treated with TR001 are alive and normal at 18 days post fertilization (dpf), a point in time when not a single untreated sapje individual survives. Time to 50 % death of treated zebrafish increases from 5 to 28 dpf, a sizeable number of individuals becoming young adults in spite of the persistent lack of dystrophin expression. TR001 improves respiration of myoblasts and myotubes from DMD patients, suggesting that PTP-dependent dysfunction also occurs in the human disease and that mitochondrial therapy of DMD with PTP-inhibiting triazoles is a viable treatment option.


Asunto(s)
Proteínas de la Membrana/deficiencia , Poro de Transición de la Permeabilidad Mitocondrial/antagonistas & inhibidores , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Proteínas Musculares/deficiencia , Triazoles/farmacología , Proteínas de Pez Cebra/deficiencia , Animales , Animales Modificados Genéticamente , Línea Celular Transformada , Relación Dosis-Respuesta a Droga , Humanos , Locomoción/efectos de los fármacos , Locomoción/fisiología , Proteínas de la Membrana/genética , Proteínas Musculares/genética , Rodaminas/farmacología , Triazoles/química , Pez Cebra , Proteínas de Pez Cebra/genética
8.
FASEB J ; 33(2): 1887-1898, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30183376

RESUMEN

The gut microbiome supplies essential metabolites such as short-chain fatty acids to skeletal muscle mitochondria, and the composition and activity of the microbiota is in turn affected by muscle fitness. To further our understanding of the complex interactions between the gut microbiome and muscle, we examined the effect of microbiota-derived phenolic metabolites on the ability of human muscle cells to take up and metabolize glucose. As a model, we used the differentiated human skeletal muscle myoblast line, LHCN-M2, which expresses typical muscle phenotypic markers. We initially tested a selected panel of parent phenolic compounds and microbial metabolites, and their respective phenolic conjugates, as found in blood. Several of the tested compounds increased glucose uptake and metabolism, notably in high glucose- and insulin-treated myotubes. One of the most effective was isovanillic acid 3 -O-sulfate (IVAS), a metabolite from the microbiome found in the blood, primarily derived from consumed cyanidin 3 -O-glucoside, a major compound in berry fruits. IVAS stimulated a dose-dependent increase in glucose transport through glucose transporter GLUT4- and PI3K-dependent mechanisms. IVAS also up-regulated GLUT1, GLUT4, and PI3K p85α protein, and increased phosphorylation of Akt. The stimulation of glucose uptake and metabolism by a unique microbiome metabolite provides a novel link among diet, gut microbiota, and skeletal muscle energy source utilization.-Houghton, M. J., Kerimi, A., Mouly, V., Tumova, S., Williamson, G. Gut microbiome catabolites as novel modulators of muscle cell glucose metabolism.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Glucosa/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Transducción de Señal , Línea Celular Transformada , Glucósidos/metabolismo , Humanos , Fibras Musculares Esqueléticas/citología , Ácido Vanílico/análogos & derivados , Ácido Vanílico/metabolismo
9.
Mol Ther ; 27(11): 2005-2017, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31416775

RESUMEN

Mutations in the dystrophin (DMD) gene and consequent loss of dystrophin cause Duchenne muscular dystrophy (DMD). A promising therapy for DMD, single-exon skipping using antisense phosphorodiamidate morpholino oligomers (PMOs), currently confronts major issues in that an antisense drug induces the production of functionally undefined dystrophin and may not be similarly efficacious among patients with different mutations. Accordingly, the applicability of this approach is limited to out-of-frame mutations. Here, using an exon-skipping efficiency predictive tool, we designed three different PMO cocktail sets for exons 45-55 skipping aiming to produce a dystrophin variant with preserved functionality as seen in milder or asymptomatic individuals with an in-frame exons 45-55 deletion. Of them, the most effective set was composed of select PMOs that each efficiently skips an assigned exon in cell-based screening. These combinational PMOs fitted to different deletions of immortalized DMD patient muscle cells significantly induced exons 45-55 skipping with removing 3, 8, or 10 exons and dystrophin restoration as represented by western blotting. In vivo skipping of the maximum 11 human DMD exons was confirmed in humanized mice. The finding indicates that our PMO set can be used to create mutation-tailored cocktails for exons 45-55 skipping and treat over 65% of DMD patients carrying out-of-frame or in-frame deletions.


Asunto(s)
Empalme Alternativo , Distrofina/genética , Exones , Regulación de la Expresión Génica , Morfolinos/genética , Distrofia Muscular de Duchenne/genética , Mutación , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , Distrofia Muscular de Duchenne/diagnóstico , Fenotipo , Eliminación de Secuencia
10.
Am J Hum Genet ; 98(1): 90-101, 2016 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-26686765

RESUMEN

Clustered regularly interspaced short palindromic repeat (CRISPR) has arisen as a frontrunner for efficient genome engineering. However, the potentially broad therapeutic implications are largely unexplored. Here, to investigate the therapeutic potential of CRISPR/Cas9 in a diverse set of genetic disorders, we establish a pipeline that uses readily obtainable cells from affected individuals. We show that an adapted version of CRISPR/Cas9 increases the amount of utrophin, a known disease modifier in Duchenne muscular dystrophy (DMD). Furthermore, we demonstrate preferential elimination of the dominant-negative FGFR3 c.1138G>A allele in fibroblasts of an individual affected by achondroplasia. Using a previously undescribed approach involving single guide RNA, we successfully removed large genome rearrangement in primary cells of an individual with an X chromosome duplication including MECP2. Moreover, removal of a duplication of DMD exons 18-30 in myotubes of an individual affected by DMD produced full-length dystrophin. Our findings establish the far-reaching therapeutic utility of CRISPR/Cas9, which can be tailored to target numerous inherited disorders.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Enfermedades Genéticas Congénitas/terapia , Alelos , Expresión Génica , Enfermedades Genéticas Congénitas/genética , Humanos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia
11.
Brain ; 141(6): 1609-1621, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29741608

RESUMEN

Dermatomyositis is an acquired auto-immune disease characterized by skin lesions and muscle-specific pathological features such as perifascicular muscle fibre atrophy and vasculopathy. Dermatomyositis patients display an upregulation of type I interferon-inducible genes in muscle fibres, endothelial cells, skin and peripheral blood. However, the effect of type I interferon on muscle tissue has not yet been determined. Our aim was to study the pathogenicity of type I interferon in vitro and to evaluate the efficacy of the type I interferon pathway blockade for therapeutic purposes. The activation of type I interferon in differentiating myoblasts abolished myotube formation with reduced myogenin expression while in differentiated myotubes, we observed a reduction in surface area and an upregulation of atrophy-associated genes. In vitro endothelial cells exposure to type I interferon disrupted vascular network organization. All the pathogenic effects observed in vitro were abolished by ruxolitinib. Finally, four refractory dermatomyositis patients were treated with ruxolitinib and improvement ensued in skin lesions, muscle weakness and a reduced serum type I interferon levels and interferon-inducbile genes scores. We propose JAK inhibition as a mechanism-based treatment for dermatomyositis, a finding that is relevant for the design of future clinical trials targeting dermatomyositis.


Asunto(s)
Dermatomiositis , Interferón Tipo I/toxicidad , Inhibidores de las Cinasas Janus/uso terapéutico , Músculo Esquelético/efectos de los fármacos , Pirazoles/uso terapéutico , Transducción de Señal/efectos de los fármacos , Anciano , Anciano de 80 o más Años , Línea Celular Transformada , Dermatomiositis/inducido químicamente , Dermatomiositis/tratamiento farmacológico , Dermatomiositis/patología , Células Endoteliales/efectos de los fármacos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Proteínas de Resistencia a Mixovirus/genética , Proteínas de Resistencia a Mixovirus/metabolismo , Neovascularización Patológica/inducido químicamente , Nitrilos , Pirimidinas , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas Ligasas SKP Cullina F-box/metabolismo , Regulación hacia Arriba/efectos de los fármacos
12.
Mol Ther ; 26(2): 618-633, 2018 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-29221805

RESUMEN

After intra-arterial delivery in the dystrophic dog, allogeneic muscle-derived stem cells, termed MuStem cells, contribute to long-term stabilization of the clinical status and preservation of the muscle regenerative process. However, it remains unknown whether the human counterpart could be identified, considering recent demonstrations of divergent features between species for several somatic stem cells. Here, we report that MuStem cells reside in human skeletal muscle and display a long-term ability to proliferate, allowing generation of a clinically relevant amount of cells. Cultured human MuStem (hMuStem) cells do not express hematopoietic, endothelial, or myo-endothelial cell markers and reproducibly correspond to a population of early myogenic-committed progenitors with a perivascular/mesenchymal phenotypic signature, revealing a blood vessel wall origin. Importantly, they exhibit both myogenesis in vitro and skeletal muscle regeneration after intramuscular delivery into immunodeficient host mice. Together, our findings provide new insights supporting the notion that hMuStem cells could represent an interesting therapeutic candidate for dystrophic patients.


Asunto(s)
Músculo Esquelético/fisiología , Mioblastos Esqueléticos/citología , Mioblastos Esqueléticos/trasplante , Regeneración , Trasplante de Células Madre , Células Madre Adultas , Animales , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Humanos , Ratones , Desarrollo de Músculos , Distrofia Muscular Animal/terapia , Distrofia Muscular de Duchenne/terapia , Medicina Regenerativa
13.
Int J Mol Sci ; 21(1)2019 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-31861684

RESUMEN

Dysferlin is a transmembrane C-2 domain-containing protein involved in vesicle trafficking and membrane remodeling in skeletal muscle cells. However, the mechanism by which dysferlin regulates these cellular processes remains unclear. Since actin dynamics is critical for vesicle trafficking and membrane remodeling, we studied the role of dysferlin in Ca2+-induced G-actin incorporation into filaments in four different immortalized myoblast cell lines (DYSF2, DYSF3, AB320, and ER) derived from patients harboring mutations in the dysferlin gene. As compared with immortalized myoblasts obtained from a control subject, dysferlin expression and G-actin incorporation were significantly decreased in myoblasts from dysferlinopathy patients. Stable knockdown of dysferlin with specific shRNA in control myoblasts also significantly reduced G-actin incorporation. The impaired G-actin incorporation was restored by the expression of full-length dysferlin as well as dysferlin N-terminal or C-terminal regions, both of which contain three C2 domains. DYSF3 myoblasts also exhibited altered distribution of annexin A2, a dysferlin partner involved in actin remodeling. However, dysferlin N-terminal and C-terminal regions appeared to not fully restore such annexin A2 mislocation. Then, our results suggest that dysferlin regulates actin remodeling by a mechanism that does to not involve annexin A2.


Asunto(s)
Actinas/metabolismo , Disferlina/química , Distrofia Muscular de Cinturas/metabolismo , Mioblastos/citología , Citoesqueleto de Actina/metabolismo , Actinas/genética , Adolescente , Adulto , Línea Celular , Disferlina/genética , Disferlina/metabolismo , Femenino , Humanos , Masculino , Distrofia Muscular de Cinturas/genética , Mioblastos/metabolismo , Dominios Proteicos
14.
Ann Neurol ; 81(4): 538-548, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28224701

RESUMEN

OBJECTIVE: Immune-mediated necrotizing myopathies (IMNM) may be associated with either anti-signal recognition protein (SRP) or anti-3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) antibodies (Abs), and the titer of these Abs is correlated with disease activity. We investigated whether anti-SRP and anti-HMGCR Abs could be involved in muscle damage. METHODS: Muscle biopsies of patients were analyzed for atrophy and regeneration by measuring fiber size and by performing immunostaining of neonatal myosin heavy chain. To further understand the role of the Abs in the pathology, we performed muscle cell coculture with the Abs. Atrophy and regeneration were evaluated based on the myotube surface area as well as gene and cytokine profiles. RESULTS: In muscle biopsies of patients with anti-SRP+ and anti-HMGCR+ Abs, a large number of small fibers corresponding to both atrophic and regenerating fibers were observed. In vitro, anti-SRP and anti-HMGCR Abs induced muscle fiber atrophy and increased the transcription of MAFbx and TRIM63. In addition, the muscle fiber atrophy was associated with high levels of inflammatory cytokines: tumor necrosis factor, interleukin (IL)-6, and reactive oxygen species. In the presence of anti-SRP or anti-HMGCR Abs, mechanisms involved in muscle regeneration were also impaired due to a defect of myoblast fusion. This defect was associated with a decreased production of IL-4 and IL-13. The addition of IL-4 and/or IL-13 totally rescued fusion capacity. INTERPRETATION: These data show that molecular mechanisms of atrophy and regeneration are affected and contribute to loss of muscle function occurring in IMNM. This emphasizes the potential interest of targeted therapies addressing these mechanisms. Ann Neurol 2017;81:538-548.


Asunto(s)
Autoanticuerpos/inmunología , Enfermedades Autoinmunes , Hidroximetilglutaril-CoA Reductasas/inmunología , Fibras Musculares Esqueléticas , Enfermedades Musculares , Regeneración/fisiología , Partícula de Reconocimiento de Señal/inmunología , Bancos de Tejidos , Atrofia/patología , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/patología , Enfermedades Autoinmunes/fisiopatología , Técnicas de Cultivo de Célula , Humanos , Fibras Musculares Esqueléticas/inmunología , Fibras Musculares Esqueléticas/patología , Fibras Musculares Esqueléticas/fisiología , Enfermedades Musculares/inmunología , Enfermedades Musculares/patología , Enfermedades Musculares/fisiopatología , Necrosis/patología
15.
Mol Ther ; 25(10): 2345-2359, 2017 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-28750736

RESUMEN

Although cell-based therapy is considered a promising method aiming at treating different muscular disorders, little clinical benefit has been reported. One of major hurdles limiting the efficiency of myoblast transfer therapy is the poor survival of the transplanted cells. Any intervention upon the donor cells focused on enhancing in vivo survival, proliferation, and expansion is essential to improve the effectiveness of such therapies in regenerative medicine. In the present work, we investigated the potential role of obestatin, an autocrine peptide factor regulating skeletal muscle growth and repair, to improve the outcome of myoblast-based therapy by xenotransplanting primary human myoblasts into immunodeficient mice. The data proved that short in vivo obestatin treatment of primary human myoblasts not only enhances the efficiency of engraftment, but also facilitates an even distribution of myoblasts in the host muscle. Moreover, this treatment leads to a hypertrophic response of the human-derived regenerating myofibers. Taken together, the activation of the obestatin/GPR39 pathway resulted in an overall improvement of the efficacy of cell engraftment within the host's skeletal muscle. These data suggest considerable potential for future therapeutic applications and highlight the importance of combinatorial therapies.


Asunto(s)
Ghrelina/metabolismo , Ghrelina/farmacología , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Humanos , Inyecciones Intramusculares , Ratones , Ratones SCID , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo
16.
Mol Ther ; 25(11): 2561-2572, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28865998

RESUMEN

Duchenne muscular dystrophy (DMD), the most common lethal genetic disorder, is caused by mutations in the dystrophin (DMD) gene. Exon skipping is a therapeutic approach that uses antisense oligonucleotides (AOs) to modulate splicing and restore the reading frame, leading to truncated, yet functional protein expression. In 2016, the US Food and Drug Administration (FDA) conditionally approved the first phosphorodiamidate morpholino oligomer (morpholino)-based AO drug, eteplirsen, developed for DMD exon 51 skipping. Eteplirsen remains controversial with insufficient evidence of its therapeutic effect in patients. We recently developed an in silico tool to design antisense morpholino sequences for exon skipping. Here, we designed morpholino AOs targeting DMD exon 51 using the in silico tool and quantitatively evaluated the effects in immortalized DMD muscle cells in vitro. To our surprise, most of the newly designed morpholinos induced exon 51 skipping more efficiently compared with the eteplirsen sequence. The efficacy of exon 51 skipping and rescue of dystrophin protein expression were increased by up to more than 12-fold and 7-fold, respectively, compared with the eteplirsen sequence. Significant in vivo efficacy of the most effective morpholino, determined in vitro, was confirmed in mice carrying the human DMD gene. These findings underscore the importance of AO sequence optimization for exon skipping.


Asunto(s)
Distrofina/genética , Terapia Genética/métodos , Morfolinos/genética , Distrofia Muscular de Duchenne/terapia , Oligonucleótidos Antisentido/genética , Recuperación de la Función , Animales , Modelos Animales de Enfermedad , Distrofina/metabolismo , Exones , Femenino , Expresión Génica , Humanos , Masculino , Ratones , Ratones Transgénicos , Morfolinos/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Mutación , Oligonucleótidos Antisentido/metabolismo , Empalme del ARN , Sistemas de Lectura
17.
Mol Ther ; 25(1): 24-43, 2017 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-28129118

RESUMEN

Myotonic dystrophy type 1 (DM1) is caused by (CTG⋅CAG)n-repeat expansion within the DMPK gene and thought to be mediated by a toxic RNA gain of function. Current attempts to develop therapy for this disease mainly aim at destroying or blocking abnormal properties of mutant DMPK (CUG)n RNA. Here, we explored a DNA-directed strategy and demonstrate that single clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-cleavage in either its 5' or 3' unique flank promotes uncontrollable deletion of large segments from the expanded trinucleotide repeat, rather than formation of short indels usually seen after double-strand break repair. Complete and precise excision of the repeat tract from normal and large expanded DMPK alleles in myoblasts from unaffected individuals, DM1 patients, and a DM1 mouse model could be achieved at high frequency by dual CRISPR/Cas9-cleavage at either side of the (CTG⋅CAG)n sequence. Importantly, removal of the repeat appeared to have no detrimental effects on the expression of genes in the DM1 locus. Moreover, myogenic capacity, nucleocytoplasmic distribution, and abnormal RNP-binding behavior of transcripts from the edited DMPK gene were normalized. Dual sgRNA-guided excision of the (CTG⋅CAG)n tract by CRISPR/Cas9 technology is applicable for developing isogenic cell lines for research and may provide new therapeutic opportunities for patients with DM1.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Inestabilidad Genómica , Distrofia Miotónica/genética , Proteína Quinasa de Distrofia Miotónica/genética , Expansión de Repetición de Trinucleótido , Repeticiones de Trinucleótidos , Animales , Proteínas Bacterianas/genética , Secuencia de Bases , Proteína 9 Asociada a CRISPR , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Codón , Modelos Animales de Enfermedad , Endonucleasas/genética , Fibroblastos/metabolismo , Expresión Génica , Orden Génico , Sitios Genéticos , Humanos , Ratones , ARN Guía de Kinetoplastida , ARN Mensajero/genética , ARN Mensajero/metabolismo , Eliminación de Secuencia
18.
Am J Respir Crit Care Med ; 196(11): 1422-1433, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28809518

RESUMEN

RATIONALE: Loss of skeletal muscle mass and function is a common consequence of critical illness and a range of chronic diseases, but the mechanisms by which this occurs are unclear. OBJECTIVES: To identify microRNAs (miRNAs) that were increased in the quadriceps of patients with muscle wasting and to determine the molecular pathways by which they contributed to muscle dysfunction. METHODS: miRNA-542-3p/5p (miR-542-3p/5p) were quantified in the quadriceps of patients with chronic obstructive pulmonary disease and intensive care unit-acquired weakness (ICUAW). The effect of miR-542-3p/5p was determined on mitochondrial function and transforming growth factor-ß signaling in vitro and in vivo. MEASUREMENTS AND MAIN RESULTS: miR-542-3p/5p were elevated in patients with chronic obstructive pulmonary disease but more markedly in patients with ICUAW. In vitro, miR-542-3p suppressed the expression of the mitochondrial ribosomal protein MRPS10 and reduced 12S ribosomal RNA (rRNA) expression, suggesting mitochondrial ribosomal stress. miR-542-5p increased nuclear phospho-SMAD2/3 and suppressed expression of SMAD7, SMURF1, and PPP2CA, proteins that inhibit or reduce SMAD2/3 phosphorylation, suggesting that miR-542-5p increased transforming growth factor-ß signaling. In mice, miR-542 overexpression caused muscle wasting, and reduced mitochondrial function, 12S rRNA expression, and SMAD7 expression, consistent with the effects of the miRNAs in vitro. Similarly, in patients with ICUAW, the expression of 12S rRNA and of the inhibitors of SMAD2/3 phosphorylation were reduced, indicative of mitochondrial ribosomal stress and increased transforming growth factor-ß signaling. In patients undergoing aortic surgery, preoperative levels of miR-542-3p/5p were positively correlated with muscle loss after surgery. CONCLUSIONS: Elevated miR-542-3p/5p may cause muscle atrophy in intensive care unit patients through the promotion of mitochondrial dysfunction and activation of SMAD2/3 phosphorylation.


Asunto(s)
Cuidados Críticos , MicroARNs/metabolismo , Mitocondrias/metabolismo , Debilidad Muscular/metabolismo , Músculo Cuádriceps/metabolismo , Proteínas Smad/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Unidades de Cuidados Intensivos , Masculino , Ratones , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
19.
Nucleic Acids Res ; 44(3): 1449-70, 2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-26762977

RESUMEN

Duchenne muscular dystrophy (DMD) is a fatal X-linked muscle-wasting disorder caused by mutations in the 2.4 Mb dystrophin-encoding DMD gene. The integration of gene delivery and gene editing technologies based on viral vectors and sequence-specific designer nucleases, respectively, constitutes a potential therapeutic modality for permanently repairing defective DMD alleles in patient-derived myogenic cells. Therefore, we sought to investigate the feasibility of combining adenoviral vectors (AdVs) with CRISPR/Cas9 RNA-guided nucleases (RGNs) alone or together with transcriptional activator-like effector nucleases (TALENs), for endogenous DMD repair through non-homologous end-joining (NHEJ). The strategies tested involved; incorporating small insertions or deletions at out-of-frame sequences for reading frame resetting, splice acceptor knockout for DNA-level exon skipping, and RGN-RGN or RGN-TALEN multiplexing for targeted exon(s) removal. We demonstrate that genome editing based on the activation and recruitment of the NHEJ DNA repair pathway after AdV delivery of designer nuclease genes, is a versatile and robust approach for repairing DMD mutations in bulk populations of patient-derived muscle progenitor cells (up to 37% of corrected DMD templates). These results open up a DNA-level genetic medicine strategy in which viral vector-mediated transient designer nuclease expression leads to permanent and regulated dystrophin synthesis from corrected native DMD alleles.


Asunto(s)
Distrofina/metabolismo , Endonucleasas/metabolismo , Mioblastos/metabolismo , ARN Guía de Kinetoplastida/metabolismo , Adenoviridae/genética , Alelos , Secuencia de Bases , Western Blotting , Sistemas CRISPR-Cas , Línea Celular , Reparación del ADN por Unión de Extremidades , Distrofina/genética , Endonucleasas/genética , Terapia Genética/métodos , Vectores Genéticos/genética , Células HEK293 , Células HeLa , Humanos , Microscopía Fluorescente , Datos de Secuencia Molecular , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/terapia , Mutación , ARN Guía de Kinetoplastida/genética , Transducción Genética
20.
Nucleic Acids Res ; 44(18): 8621-8640, 2016 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-27302134

RESUMEN

Myogenic regulatory factors of the MyoD family have the ability to reprogram differentiated cells toward a myogenic fate. In this study, we demonstrate that Six1 or Six4 are required for the reprogramming by MyoD of mouse embryonic fibroblasts (MEFs). Using microarray experiments, we found 761 genes under the control of both Six and MyoD. Using MyoD ChIPseq data and a genome-wide search for Six1/4 MEF3 binding sites, we found significant co-localization of binding sites for MyoD and Six proteins on over a thousand mouse genomic DNA regions. The combination of both datasets yielded 82 genes which are synergistically activated by Six and MyoD, with 96 associated MyoD+MEF3 putative cis-regulatory modules (CRMs). Fourteen out of 19 of the CRMs that we tested demonstrated in Luciferase assays a synergistic action also observed for their cognate gene. We searched putative binding sites on these CRMs using available databases and de novo search of conserved motifs and demonstrated that the Six/MyoD synergistic activation takes place in a feedforward way. It involves the recruitment of these two families of transcription factors to their targets, together with partner transcription factors, encoded by genes that are themselves activated by Six and MyoD, including Mef2, Pbx-Meis and EBF.


Asunto(s)
Reprogramación Celular/genética , Genoma , Proteínas de Homeodominio/metabolismo , Proteína MioD/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Transactivadores/metabolismo , Animales , Secuencia de Bases , Sitios de Unión/genética , Células Cultivadas , Inmunoprecipitación de Cromatina , Embrión de Mamíferos/citología , Fibroblastos/metabolismo , Proteínas de Homeodominio/genética , Humanos , Luciferasas/metabolismo , Ratones Noqueados , Desarrollo de Músculos/genética , Mutación/genética , Proteínas Nucleares/metabolismo , Motivos de Nucleótidos/genética , Reproducibilidad de los Resultados , Transactivadores/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA