Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Biochem Biophys Res Commun ; 487(2): 403-408, 2017 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-28416386

RESUMEN

Inhibition of transcriptional regulators of bacterial pathogens with the aim of reprogramming their metabolism to modify their antibiotic susceptibility constitutes a promising therapeutic strategy. One example is the bio-activation of the anti-tubercular pro-drug ethionamide, which activity could be enhanced by inhibiting the transcriptional repressor EthR. Recently, we discovered that inhibition of a second transcriptional repressor, EthR2, leads to the awakening of a new ethionamide bio-activation pathway. The x-ray structure of EthR2 was solved at 2.3 Å resolution in complex with a compound called SMARt-420 (Small Molecule Aborting Resistance). Detailed comparison and structural analysis revealed interesting insights for the upcoming structure-based design of EthR2 inhibitors as an alternative to revert ethionamide resistance in Mycobacterium tuberculosis.


Asunto(s)
Antituberculosos/química , Proteínas Bacterianas/química , Proteínas Bacterianas/ultraestructura , Isoxazoles/química , Simulación del Acoplamiento Molecular , Mycobacterium tuberculosis/metabolismo , Proteínas Represoras/química , Proteínas Represoras/ultraestructura , Compuestos de Espiro/química , Sitios de Unión , Modelos Químicos , Unión Proteica , Conformación Proteica , Mapeo de Interacción de Proteínas , Relación Estructura-Actividad
2.
Sci Transl Med ; 14(643): eaaz6280, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35507672

RESUMEN

The sensitivity of Mycobacterium tuberculosis, the pathogen that causes tuberculosis (TB), to antibiotic prodrugs is dependent on the efficacy of the activation process that transforms the prodrugs into their active antibacterial moieties. Various oxidases of M. tuberculosis have the potential to activate the prodrug ethionamide. Here, we used medicinal chemistry coupled with a phenotypic assay to select the N-acylated 4-phenylpiperidine compound series. The lead compound, SMARt751, interacted with the transcriptional regulator VirS of M. tuberculosis, which regulates the mymA operon encoding a monooxygenase that activates ethionamide. SMARt751 boosted the efficacy of ethionamide in vitro and in mouse models of acute and chronic TB. SMARt751 also restored full efficacy of ethionamide in mice infected with M. tuberculosis strains carrying mutations in the ethA gene, which cause ethionamide resistance in the clinic. SMARt751 was shown to be safe in tests conducted in vitro and in vivo. A model extrapolating animal pharmacokinetic and pharmacodynamic parameters to humans predicted that as little as 25 mg of SMARt751 daily would allow a fourfold reduction in the dose of ethionamide administered while retaining the same efficacy and reducing side effects.


Asunto(s)
Mycobacterium tuberculosis , Profármacos , Tuberculosis , Animales , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Etionamida/química , Etionamida/farmacología , Etionamida/uso terapéutico , Ratones , Profármacos/farmacología , Profármacos/uso terapéutico , Tuberculosis/tratamiento farmacológico
3.
ACS Infect Dis ; 6(3): 366-378, 2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-32011115

RESUMEN

Killing more than one million people each year, tuberculosis remains the leading cause of death from a single infectious agent. The growing threat of multidrug-resistant strains of Mycobacterium tuberculosis stresses the need for alternative therapies. EthR, a mycobacterial transcriptional regulator, is involved in the control of the bioactivation of the second-line drug ethionamide. We have previously reported the discovery of in vitro nanomolar boosters of ethionamide through fragment-based approaches. In this study, we have further explored the structure-activity and structure-property relationships in this chemical family. By combining structure-based drug design and in vitro evaluation of the compounds, we identified a new oxadiazole compound as the first fragment-based ethionamide booster which proved to be active in vivo, in an acute model of tuberculosis infection.


Asunto(s)
Antituberculosos/farmacología , Diseño de Fármacos , Etionamida/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Oxadiazoles/farmacología , Proteínas Represoras/antagonistas & inhibidores , Animales , Antituberculosos/química , Cristalografía por Rayos X , Descubrimiento de Drogas , Etionamida/química , Femenino , Ratones , Ratones Endogámicos BALB C , Oxadiazoles/química , Oxadiazoles/aislamiento & purificación , Relación Estructura-Actividad , Tuberculosis/tratamiento farmacológico
4.
Eur J Med Chem ; 200: 112440, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32505086

RESUMEN

Mycobacterium tuberculosis (M.tb), the etiologic agent of tuberculosis, remains the leading cause of death from a single infectious agent worldwide. The emergence of drug-resistant M.tb strains stresses the need for drugs acting on new targets. Mycolic acids are very long chain fatty acids playing an essential role in the architecture and permeability of the mycobacterial cell wall. Their biosynthesis involves two fatty acid synthase (FAS) systems. Among the four enzymes (MabA, HadAB/BC, InhA and KasA/B) of the FAS-II cycle, MabA (FabG1) remains the only one for which specific inhibitors have not been reported yet. The development of a new LC-MS/MS based enzymatic assay allowed the screening of a 1280 fragment-library and led to the discovery of the first small molecules that inhibit MabA activity. A fragment from the anthranilic acid series was optimized into more potent inhibitors and their binding to MabA was confirmed by 19F ligand-observed NMR experiments.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Ácido Graso Sintasas/antagonistas & inhibidores , Mycobacterium tuberculosis/enzimología , ortoaminobenzoatos/farmacología , Proteínas Bacterianas/metabolismo , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/química , Ácido Graso Sintasas/metabolismo , Estructura Molecular , Relación Estructura-Actividad , ortoaminobenzoatos/química
5.
Biochim Biophys Acta Proteins Proteom ; 1867(3): 248-258, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30553830

RESUMEN

The Mycobacterium tuberculosis EthR is a member of the TetR family of repressors, controlling the expression of EthA, a mono-oxygenase responsible for the bioactivation of the prodrug ethionamide. This protein was established as a promising therapeutic target against tuberculosis, allowing, when inhibited by a drug-like molecule, to boost the action of ethionamide. Dozens of EthR crystal structures have been solved in complex with ligands. Herein, we disclose EthR structures in complex with 18 different small molecules and then performed in-depth analysis on the complete set of EthR structures that provides insights on EthR-ligand interactions. The 81 molecules solved in complex with EthR show a large diversity of chemical structures that were split up into several chemical clusters. Two of the most striking common points of EthR-ligand interactions are the quasi-omnipresence of a hydrogen bond bridging compounds with Asn179 and the high occurrence of π-π interactions involving Phe110. A systematic analysis of the protein-ligand contacts identified eight hot spot residues that defined the basic structural features governing the binding mode of small molecules to EthR. Implications for the design of new potent inhibitors are discussed.


Asunto(s)
Proteínas Represoras/química , Ligandos , Conformación Proteica , Pliegue de Proteína , Multimerización de Proteína
6.
Eur J Med Chem ; 167: 426-438, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30784877

RESUMEN

Tuberculosis (TB) caused by the pathogen Mycobacterium tuberculosis, represents one of the most challenging threat to public health worldwide, and with the increasing resistance to approved TB drugs, it is needed to develop new strategies to address this issue. Ethionamide is one of the most widely used drugs for the treatment of multidrug-resistant TB. It is a prodrug that requires activation by mycobacterial monooxygenases to inhibit the enoyl-ACP reductase InhA, which is involved in mycolic acid biosynthesis. Very recently, we identified that inhibition of a transcriptional repressor, termed EthR2, derepresses a new bioactivation pathway that results in the boosting of ethionamide activation. Herein, we describe the identification of potent EthR2 inhibitors using fragment-based screening and structure-based optimization. A target-based screening of a fragment library using thermal shift assay followed by X-ray crystallography identified 5 hits. Rapid optimization of the tropinone chemical series led to compounds with improved in vitro potency.


Asunto(s)
Mycobacterium tuberculosis/efectos de los fármacos , Proteínas Represoras/antagonistas & inhibidores , Tropanos/farmacología , Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos/métodos , Etionamida/metabolismo , Humanos , Mycobacterium tuberculosis/química , Tropanos/síntesis química
7.
Science ; 355(6330): 1206-1211, 2017 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-28302858

RESUMEN

Antibiotic resistance is one of the biggest threats to human health globally. Alarmingly, multidrug-resistant and extensively drug-resistant Mycobacterium tuberculosis have now spread worldwide. Some key antituberculosis antibiotics are prodrugs, for which resistance mechanisms are mainly driven by mutations in the bacterial enzymatic pathway required for their bioactivation. We have developed drug-like molecules that activate a cryptic alternative bioactivation pathway of ethionamide in M. tuberculosis, circumventing the classic activation pathway in which resistance mutations have now been observed. The first-of-its-kind molecule, named SMARt-420 (Small Molecule Aborting Resistance), not only fully reverses ethionamide-acquired resistance and clears ethionamide-resistant infection in mice, it also increases the basal sensitivity of bacteria to ethionamide.


Asunto(s)
Antituberculosos/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Etionamida/metabolismo , Tuberculosis Extensivamente Resistente a Drogas/microbiología , Isoxazoles/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Compuestos de Espiro/farmacología , Animales , ADN/metabolismo , Etionamida/farmacología , Humanos , Ratones , Mutación , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Oxadiazoles/farmacología , Piperidinas/farmacología , Unión Proteica/efectos de los fármacos , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA