Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
J Environ Manage ; 351: 119685, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38042070

RESUMEN

Pyrolysis is a promising method to treat antibiotic fermentation residue (AFR), a hazardous waste in China, with the benefits of detoxification and resource recycling. However, the application of the AFR-derived biochar has been limited yet, restricting the use of pyrolysis to treat AFR. Herein, for the first time, we reported the use of magnetic biochars derived from vancomycin fermentation residue to rapidly and efficiently co-adsorb multiple heavy metals from diverse types of water with complex matrices. The biochar prepared at 700 °C (labeled as VBC700) exhibited high affinity and selectivity for multiple heavy metals, especially for Ag(I), Hg(II), Pb(II), and Cu(II). The kinetics for Ag(I), Hg(II), and Pb(II) were ultrafast with an equilibrium time of only 5 min, while those for Cu(II) were relatively slower. The maximum adsorption capacity calculated from the Langmuir model for Ag(I), Hg(II), Pb(II), and Cu(II) reached 177.4, 105.9, 387.1, 124.5 mg/g, respectively, which were superior to much previously reported adsorbents. Impressively, Na(I), K(I), Ca(II), Mg(II), and salinity did not affect the capture of these heavy metals, and thus >99% of Ag(I), Pb(II), and Cu(II) were concurrently removed from complex water matrices including seawater, which has rarely been reported before. Furthermore, VBC700 remained high adsorption performance at pH ≥ 3. The adsorption mechanisms included ion exchange, precipitation, and inner-sphere complexation. Overall, the results demonstrate that VBC700 would be an excellent adsorbent to co-capture multiple heavy metals from diverse types of water, highlighting the feasibility of using pyrolysis to achieve a win-win goal for AFR management and heavy metal pollution control.


Asunto(s)
Mercurio , Metales Pesados , Contaminantes Químicos del Agua , Agua , Antibacterianos , Fermentación , Plomo , Metales Pesados/química , Carbón Orgánico/química , Adsorción , Contaminantes Químicos del Agua/química , Fenómenos Magnéticos
2.
Fish Shellfish Immunol ; 130: 501-511, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36162773

RESUMEN

Liza haematocheila is exposed to various chemical contaminants from anthropogenic sources, including tributyltin chloride (TBTC). Yet the toxicity mechanism of TBTC on haarder remains unclear. The haarder was exposed to different doses (0, 10%, 20%, and 50% of LC50-96 h) of TBTC. In this study, the results revealed its high bioaccumulation in the livers and significant alteration for development. The activities of antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase decreased after 96-h exposure to TBTC, this accompanied by an increased malondialdehyde level. TBTC exposure caused the intense production of reactive oxygen species, a reduction in total blood cell count in serum, and apoptosis-related alterations in livers, indicating that enhanced oxidative stress occurred in the process of TBTC exposure. Histological results revealed angiorrhexis and infiltration of inflammatory cells, vacuolar degeneration of hepatocytes in the livers, and swelling, fusion, and disintegration of gill organs. Interestingly, the obtained transcriptional profiles indicated that high doses of TBTC caused energy disorder, apoptosis, and adipogenesis restriction mediated by cytokines and adipokines in Jak-STAT and adipocytokine signaling pathways. In summary, acute exposure to high doses of TBTC could impair the antioxidant system and pathways related to energy, apoptosis and adipogenesis, eventually posing a serious challenge to the fitness of haarder individuals and its fish populations as marine resources.


Asunto(s)
Antioxidantes , Estrés Oxidativo , Adipoquinas/metabolismo , Animales , Antioxidantes/metabolismo , Bioacumulación , Catalasa/metabolismo , Citocinas/metabolismo , Glutatión Peroxidasa/metabolismo , Malondialdehído , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo , Compuestos de Trialquiltina
3.
J Environ Manage ; 323: 116154, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36095989

RESUMEN

River-reservoir systems have become ubiquitous among modern global aquatic environments due to the widespread construction of dams. However, little is known of antibiotic resistance gene (ARG) distributions in reservoir-river systems experiencing varying degrees of anthropogenic impacts. Here, the diversity, abundance, and spatial distribution of ARGs were comprehensively characterized along the main stem of the Minjiang River, a typical subtropic reservoir-river system in Southeast China using high-throughput quantitative PCR. A total of 252 ARG subtypes were detected from twelve sampling sites that were dominated by aac(3)-Via, followed by czcA, blaTEM, and sul1. Urban river waters (sites S9-S12) harbored more diverse ARGs than did the reservoir waters (sites S1-S7), indicating more serious antibiotic resistance pollution in areas with larger population densities. Dam construction could reduce the richness and absolute abundance of ARGs from upstream (site S7) to downstream (site S8). Urban river waters also harbored a higher proportion of mobile genetic elements (MGEs), suggesting that intensive human activities may promote ARG horizontal gene transfers. The mean relative abundance of Proteobacteria that could promote antibiotic resistance within microbial communities was also highest in urban river waters. Variance partitioning analysis indicated that MGEs and bacterial communities could explain 67.33%, 44.7%, and 90.29% of variation in selected ARGs for the entire watershed, aquaculture waters, and urban river waters, respectively. These results further suggest that urban rivers are ideal media for the acquisition and spread of ARGs. These findings provide new insights into the occurrence and potential mechanisms determining the distributions of ARGs in a reservoir-river system experiencing various anthropogenic disturbances at the watershed scale.


Asunto(s)
Antibacterianos , Genes Bacterianos , Efectos Antropogénicos , Antibacterianos/farmacología , China , Farmacorresistencia Microbiana/genética , Humanos
4.
Environ Sci Technol ; 55(17): 11894-11905, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34488355

RESUMEN

Elevated concentrations of dietary selenium (Se) cause abnormalities and extirpation of fish inhabiting in Se-contaminated environments. However, its effect on fish behavior and the underlying mechanisms remain largely unknown. In this study, two-month-old zebrafish (Danio rerio) was fed seleno-l-methionine (Se-Met) at environmentally relevant concentrations (i.e., control (2.61), low (5.43), medium (12.16), and high (34.61) µg Se/g dry weight (dw), respectively, corresponding to the C, L, M, and H treatments) for 60 days. Targeted metabolomics, histopathological, and targeted transcriptional endpoints were compared to behavioral metrics to evaluate the effects of dietary exposure to Se-Met . The results showed that the levels of total Se and malondialdehyde in fish brains were increased in a dose-dependent pattern. Meanwhile, mitochondrial damages and decreased activities of the mitochondria respiratory chain complexes were observed in the neurons at the M and H treatments. In addition, dietary Se-Met affected neurotransmitters, metabolites, and transcripts of the genes associated with the dopamine, serotonin, gamma-aminobutyric acid, acetylcholine, and histamine signaling pathways in zebrafish brains at the H treatments. The total swimming distance and duration in the Novel Arm were lowered in fish from the H treatment. This study has demonstrated that dietary Se-Met affects the ultrastructure of the zebrafish brain, neurotransmitters, and associated fish behaviors and may help enhance adverse outcome pathways for neurotransmitter-behavior key events in zebrafish.


Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Animales , Antioxidantes , Encéfalo , Neurotransmisores , Selenometionina
5.
Ecotoxicol Environ Saf ; 220: 112302, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34015631

RESUMEN

Alkyl-PAHs are the predominant form of PAHs in crude oils which are supposed to demonstrate different toxicities compared to non-alkyl PAHs. Little information is available about the toxicity of alkyl-PAHs on marine Artemia. This study addressed and compared the lethal, behavioral, growth and developmental toxicities of three alkyl-PAHs, namely 3-methyl phenanthrene (3-mPhe), retene (Ret) and 2-methyl anthracene (2-mAnt), to their non-alkyl forms, phenanthrene (Phe) and anthracene (Ant) using Artemia parthenogenetica (nauplii, <24 h) as test organism following a 48 h and a 7 d of exposure, respectively. Benzo-a-pyrene (Bap) was selected as a reference toxicant for the comparison with the above alkyl-PAHs and non-alkyl PAHs. Results showed that for all tested endpoints, A. parthenogenetica nauplii had the highest sensitivity to Bap while Ant had no significant effect on nauplii survival or development within given concentrations. Considering the aqueous freely dissolved PAH concentrations, the 48 h-LC50 (survival), 48 h-EC50 (immobility) and 7 d-LC10 (survival) of Bap were calculated as 0.321, 0.285 and 0.027 µg/L, respectively, which were twofold to fivefold lower than those of Phe, 3-mPhe, Ret, Ant and 2-mAnt. A higher acute toxicity of alkyl-PAHs (3-mPhe and 2-mAnt) than their non-alkyl forms (Phe and Ant) was observed. Not limited to Phe, the common non-polar narcotic mode of action was also observed for Bap, 3-mPhe, Ret and 2-mAnt, which was evident by the inhibited mobility of nauplii. The decreased body lengths were found for all PAH treatments compared to the solvent control, whereas instar retardations were only found in nauplii exposed to Bap, Phe and Ret. Our findings emphasized the sensitivity differences of A. parthenogenetica nauplii to selected alkyl PAHs and non-alkyl PAHs and confirmed the application of lethal, behavioral and growth indicators in the toxicity evaluation of selected PAHs other than Ant. However, the distinct toxicities of these PAHs suggested other toxic modes of action may play more important roles apart from narcotic mode of action and need to be elucidated in future studies. In addition, a strong correlation between the body length and the instar of A. parthenogenetica nauplii was observed for each PAH exposure, suggesting that body length can be representative for both growth and developmental indicators during biological monitoring of PAH pollution in marine environment.


Asunto(s)
Artemia/efectos de los fármacos , Hidrocarburos Policíclicos Aromáticos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Antracenos/toxicidad , Artemia/crecimiento & desarrollo , Artemia/fisiología , Dosificación Letal Mediana , Fenantrenos/toxicidad
6.
Ecotoxicol Environ Saf ; 226: 112820, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34571422

RESUMEN

Antibiotics and nanoplastics are two prevalent pollutants in oceans, posing a great threat to marine ecosystems. As antibiotics and nanoplastics are highly bioconcentrated in lower trophic levels, evaluating their impacts on marine organisms via dietary exposure route is of great importance. In this study, the individual and joint effects of dietborne sulfamethazine (SMZ) and nanoplastic fragments (polystyrene, PS) in marine medaka (Oryzias melastigma) were investigated. After 30 days of dietary exposure, 4.62 mg/g SMZ decreased the Chao1 index (60.86% for females and 26.85% for males) and the Shannon index (68.95% for females and 65.05% for males) and significantly altered the structure of gut microbial communities in both sexes. The female fish exposed to 4.62 mg/g SMZ exhibited higher intestinal sod (43.5%), cat (38.5%) and gpx (39.6%) transcripts, indicating oxidative stress in the gut. PS alone at 3.45 mg/g slightly altered the composition of the gut microbiota. Interestingly, the mixture of SMZ and PS caused more modest effects on the gut microbiota and intestinal antioxidant physiology than the SMZ alone, suggesting that the presence of PS might alleviate the intestinal toxicity of SMZ in a scenario of dietary co-exposure. This study helps better understand the risk of antibiotics and nanoplastics to marine ecosystems.


Asunto(s)
Microbioma Gastrointestinal , Oryzias , Contaminantes Químicos del Agua , Animales , Ecosistema , Femenino , Masculino , Microplásticos , Estrés Oxidativo , Sulfametazina/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
7.
Environ Sci Technol ; 53(22): 13088-13097, 2019 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-31661968

RESUMEN

To investigate the characteristics of historic-use organochlorine pesticides (OCPs) in the marginal seawater of China, we examined the seasonal and spatial distributions of hexachlorobenzene (HCB), hexachlorocyclohexanes (HCHs), and dichlorodiphenyltrichloroethane (DDTs) in the northern South China Sea (NSCS, 18-23° N) and East China Sea (ECS, 26-32° N). Seasonally, in the NSCS, the significantly higher concentrations (p < 0.05) of HCB, HCHs, and DDTs were found in summer, autumn, and summer through autumn, respectively. In the ECS, the higher concentrations were found in summer through winter, autumn, and summer. Spatially, HCB concentrations were significantly higher in the NSCS than in the ECS during all seasons except winter. During all four seasons, concentrations of HCHs were significantly higher in the NSCS than in the ECS. In summer and autumn, concentrations of DDTs were significantly higher in the NSCS than in the ECS, while no significant differences were found in spring and winter. Generally, regional usage, river-influenced coastal plumes, phytoplankton abundances, and ocean currents played crucial roles in the input, transport, degradation, and dilution of OCPs. These dynamic factors along with the seasonally alternating monsoon directly influenced the seasonal and spatial characteristics of OCPs. Furthermore, the profiles and diagnostic ratios of HCHs and DDTs revealed highly weathered OCP residues, attributed to eroded soils carried by surface runoff and long-range oceanic and atmospheric transport.


Asunto(s)
Hidrocarburos Clorados , Plaguicidas , Contaminantes Químicos del Agua , China , Monitoreo del Ambiente , Océanos y Mares , Estaciones del Año
8.
Ecotoxicol Environ Saf ; 173: 339-346, 2019 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-30784797

RESUMEN

Bohai Bay, in the western region of northeastern China's Bohai Sea, receives water from large rivers containing various pollutants including dioxin-like compounds (DLCs). This study used the established zebrafish (Danio rerio) model, its known developmental toxicity endpoints and sensitive molecular analyses to evaluate sediments near and around an industrial effluent site in Bohai Bay. The primary objective was to assess the efficacy of rapid biological detection methods as an addition to chemical analyses. Embryos were exposed to various concentrations of sediment extracts as well as a 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) positive control. Exposure to sediment extract nearest the discharge site (P1) resulted in the most severe- and highest rates of change in embryos and larvae, suggesting that DLC contaminated sediment probably did not occur much beyond it. P1 extract resulted in concentration dependent increases in mortality and pericardial edema. Its highest concentration caused up-regulation of P-450 (CYP)-1A1(CYP1A) mRNA expression at 72 h post fertilization (hpf), an increase in its expression in gill arches as observed by whole mount in situ hybridization, and an increased signal in the Tg(cyp1a: mCherry) transgenic line. The pattern and magnitude of response was very similar to that of TCDD and supported the presence of DLCs in these sediment samples. Follow-up chemical analysis confirmed this presence and identified H7CDF, O8CDF and O8CDD as the main components in P1 extract. This study validates the use of biological assays as a rapid, sensitive, and cost-effective method to evaluate DLCs and their effects in sediment samples. Additionally, it provides support for the conclusion that DLCs have limited remobilization capacity in marine sediments.


Asunto(s)
Dioxinas/análisis , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/análisis , Contaminantes Químicos del Agua/análisis , Pez Cebra/metabolismo , Animales , China , Embrión no Mamífero/efectos de los fármacos , Desarrollo Embrionario/efectos de los fármacos , Monitoreo del Ambiente/economía
9.
Waste Manag ; 183: 132-142, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38744165

RESUMEN

Vancomycin fermentation residue (VFR) is a by-product of the pharmaceutical industry with high ecotoxicity caused by the residual antibiotics, antibiotic resistance genes (ARGs), and heavy metals (HMs). In this study, the detoxification effect of hydrothermal treatment (HT) and pyrolysis for VFR was assessed using chemical analysis and toxicity tests. When VFR was subjected to HT and pyrolysis at ≥400 °C, more than 99.70 % of the residual vancomycin and all ARGs were removed. The HMs contents in VFR followed the order of manganese (676.2 mg/kg) > zinc (148.6 mg/kg) > chromium (25.40 mg/kg) > copper (17.20 mg/kg), and they were highly bioavailable and easily leached. However, HT and pyrolysis (≥400 °C) substantially reduced the bioavailable fractions and leaching properties of the HMs. After HT and pyrolysis at ≥ 400 °C, the potential ecological risk of HMs in VFR was reduced from considerable to moderate/low levels. The elutriate acute toxicity test suggested that HT and pyrolysis at ≥ 400 °C effectively reduced the toxicity of VFR to an acceptable level (p < 0.05). This study demonstrates that HT and pyrolysis (≥400 °C) are promising methods for treating VFR and detoxifying it, and the treated products are safe for further reutilization.


Asunto(s)
Fermentación , Pirólisis , Vancomicina , Vancomicina/toxicidad , Antibacterianos/toxicidad , Antibacterianos/química , Metales Pesados/toxicidad , Metales Pesados/análisis , Pruebas de Toxicidad , Calor
10.
Aquat Toxicol ; 267: 106813, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38183774

RESUMEN

Nanoplastics can interact with antibiotics, altering their bioavailability and the ensuing toxicity in marine organisms. It is reported that plain polystyrene (PS) nanoplastics decrease the bioavailability and adverse effects of sulfamethazine (SMZ) on the gut microbiota in Oryzias melastigma. However, the influence of surface functional groups on the combined effects with SMZ remains largely unknown. In this study, adult O. melastigma were fed diet amended with 4.62 mg/g SMZ and 3.65 mg/g nanoplastics (i.e., plain PS, PS-COOH and PS-NH2) for 30 days (F0-E), followed by a depuration period of 21 days (F0-D). In addition, the eggs produced on the last day of exposure were cultured under standard protocols without further exposure for 2 months (F1 fish). The results showed that the alpha diversity or the bacterial community of gut microbiota did not differ among the SMZ + PS, SMZ + PS-COOH, and SMZ + PS-NH2 groups in the F0-E and F1 fish. Interestingly, during the depuration, a clear recovery of gut microbiota (e.g., increases in the alpha diversity, beneficial bacteria abundances and network complexity) was found in the SMZ + PS group, but not for the SMZ + PS-COOH and SMZ + PS-NH2 groups, indicating that PS-COOH and PS-NH2 could prolong the toxic effect of SMZ and hinder the recovery of gut microbiota. Compared to plain PS, lower egestion rates of PS-COOH and PS-NH2 were observed in O. melastigma. In addition, under the simulated fish digest conditions, the SMZ-loaded PS-NH2 was found to desorb more SMZ than the loaded PS and PS-COOH. These results suggested that the surface -COOH and -NH2 groups on PS could influence their egestion efficiency and the adsorption/desorption behavior with SMZ, resulting in a long-lasting SMZ stress in the gut during the depuration phase. Our findings highlight the complexity of the carrier effect and ecological risk of surface-charged nanoplastics and the interactions between nanoplastics and antibiotics in natural environments.


Asunto(s)
Microbioma Gastrointestinal , Oryzias , Contaminantes Químicos del Agua , Animales , Sulfametazina/toxicidad , Microplásticos , Contaminantes Químicos del Agua/toxicidad , Poliestirenos/toxicidad , Antibacterianos/toxicidad
11.
Aquat Toxicol ; 259: 106522, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37061421

RESUMEN

Microplastics and the antibiotic sulfamethazine (SMZ) are two prevalent pollutants in regions with high human activity, particularly in coastal marine environments. In this study, the individual and joint effects of microplastics (i.e., the bio-based microplastics polylactic acid (PLA), the petroleum-based microplastics polyethylene terephthalate (PET), and the petroleum-based microplastics polystyrene (PS) at 0.5 and 5 mg/g) and sulfamethazine (SMZ, at 5 mg/g) on the gut microbiota of marine medaka (Oryzias melastigma) via dietary route were investigated. For the individual microplastics exposure, two petroleum-based microplastics PET and PS significantly decreased the alpha diversity and the complexity of co-occurrence networks of gut microbiota. Differently, the adverse effects caused by the bio-based microplastic PLA were more modest, suggesting that PLA was less hazardous than PET and PS. For the combined exposure, SMZ alone dramatically impaired the homeostasis of gut microbiota by decreasing the alpha diversity and the complexity of co-occurrence networks, while the presence of PLA or PET alleviated these adverse effects caused by SMZ. Interestingly, such an alleviation effect was not observed in the SMZ + PS groups, suggesting that different types of microplastics might exhibit distinct joint effects with SMZ. Our findings contribute to a better understanding of the ecological risk of different types of microplastics to marine ecosystems, especially in a scenario of combined pollution with antibiotics.


Asunto(s)
Microbioma Gastrointestinal , Oryzias , Contaminantes Químicos del Agua , Animales , Humanos , Microplásticos/toxicidad , Poliestirenos/toxicidad , Plásticos/toxicidad , Sulfametazina , Tereftalatos Polietilenos/toxicidad , Ecosistema , Contaminantes Químicos del Agua/toxicidad , Antibacterianos
12.
Sci Total Environ ; 869: 161732, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36682552

RESUMEN

Ca/Fe-rich antibiotic fermentation residues (AFRs), a type of hazardous waste, can be regarded as recyclable biomass and metal resources. However, concurrent detoxification and reutilization of biomass and metals resources from AFRs have never been reported before. In this study, Ca/Fe-rich vancomycin fermentation residues were pyrolyzed into biochar to adsorb phosphate for the first time. The residual vancomycin and antibiotic resistance genes were completely decomposed during pyrolysis. The resultant Ca/Fe-rich biochar exhibited excellent performance at adsorbing phosphate without further modifications. The process had rapid kinetics and a maximum adsorption capacity of 102 mg P/g. Ca and Fe were the active sites, whereas different mechanisms were observed under acidic and alkaline conditions. Surprisingly, HCO3- enhanced phosphate adsorption with an increase of adsorption capacity from 43.9 to 71.0 mg/g when HCO3- concentration increased from 1 to 10 mM. Furthermore, actual wastewater could be effectively treated by the biochar. The phosphate-rich spent biochar significantly promoted seed germination (germination rate: 96.7 % vs. 80.0 % in control group, p < 0.01) and seedling growth (shoot length was increased by 57.9 %, p < 0.01) due to the slow release of bioavailable phosphate, and thus could be potentially used as a phosphorous fertilizer. Consequently, the hazardous waste was turned into phosphorous fertilizer, with the additional benefits of detoxifying AFRs, reutilizing biomass and metal resources from AFRs, controlling phosphate pollution, and recovering phosphate from wastewater.


Asunto(s)
Fosfatos , Aguas Residuales , Fosfatos/química , Fertilizantes , Fermentación , Antibacterianos , Pirólisis , Vancomicina , Residuos Peligrosos , Fósforo , Carbón Orgánico/química , Adsorción , Cinética
13.
Sci Total Environ ; 893: 164841, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37321489

RESUMEN

The persistence of antibiotics and nanoplastics in aquatic environment poses a great threat to aquatic organisms. In our previous study, significant decreases of bacterial richness and changes of bacterial communities in the Oryzias melastigma gut after sulfamethazine (SMZ) and polystyrene nanoplastics (PS) exposure were observed. Here, the O. melastigma dietary exposed to SMZ (0.5 mg/g, LSMZ; 5 mg/g, HSMZ), PS (5 mg/g, PS) or PS + HSMZ were depurated for 21 days to assess the extent of which these effects were reversible. Our results revealed that most diversity indexes of bacterial microbiota in the O. melastigma gut from the treatment groups were insignificantly different from the control, suggesting a large recovery of bacterial richness. Although the sequence abundances of a few genera remained significantly changed, the proportion of dominant genus was recovered. Exposure to SMZ affected the complexity of the bacterial networks, and the cooperation and exchange events of positively associated bacteria were enhanced during this period. After depuration, increases in the complexity of networks and intense competitions among bacteria were observed, which was beneficial for the robustness of networks. However, the gut bacterial microbiota was less stable, and several functional pathways were dysregulated, relative to the control. In addition, higher occurrence of pathogenic bacteria was found in the PS + HSMZ group relative to the signal pollutant group after depuration, indicating a greater hazard for the mixture of PS and SMZ. Taken together, this study contributes to a better understanding of the recovery of bacterial microbiota in fish gut after individual and combined exposure to nanoplastics and antibiotics.


Asunto(s)
Microbioma Gastrointestinal , Oryzias , Contaminantes Químicos del Agua , Animales , Sulfametazina/toxicidad , Oryzias/metabolismo , Microplásticos/metabolismo , Contaminantes Químicos del Agua/análisis , Antibacterianos/toxicidad , Antibacterianos/metabolismo
14.
Antibiotics (Basel) ; 11(1)2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-35052945

RESUMEN

Plant-based removal of nitrogen (N) and phosphorus (P) from water bodies is an important method for remediation of aquaculture wastewater. In order to acquire knowledge as to how antibiotic residues in wastewater might affect the microbial community and plant uptake of N and P, this study investigated N and P removal by a coastal plant Sesuvium portulacastrum L. grown in aquaculture wastewater treated with 0, 1, 5, or 50 mg/L sulfonamide antibiotics (sulfadiazine, SD) for 28 days and compared the microbial community structure between the water and rhizosphere. Results showed that SD significantly decreased N removal rates from 87.5% to 22.1% and total P removal rates from 99.6% to 85.5%. Plant fresh weights, root numbers, and moisture contents as well as activities of some enzymes in leaves were also reduced. SD changed the microbial community structure in water, but the microbial community structure in the rhizosphere was less affected by SD. The microbial diversity in water was higher than that in the rhizosphere, indicating microbial community differences. Our results showed that the commonly used antibiotic, SD, in aquaculture can inhibit plant growth, change the structure of microbial community, and reduce the capacity of S. portulacastrum plants to remove N and P from wastewater, and also raised alarm about detrimental effects of antibiotic residues in phytoremediation of wastewater.

15.
Sci Total Environ ; 817: 152945, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35007605

RESUMEN

Triphenyl phosphate (TPhP), a prevalent pollutant in the aquatic environment, has been reported to induce neurotoxicity (e.g., a suppression in locomotor activity) in fish larvae, posing a great threat to fish populations. However, the underlying mechanism was not fully revealed. In this study, the Oryzias melastigma larvae (21 dph) were exposed to waterborne TPhP (20 and 100 µg/L) for 7 days and a decreased locomotor activity was found. After exposure, the brain transcriptome and communities of gut microbiota were investigated to explore the potential mechanism underlying the suppressed locomotor activity by TPhP. The results showed that 1160 genes in the brain were dysregulated by TPhP, of which 24 genes were identified as being highly associated with the neural function and development (including nerve regeneration, neuronal growth and differentiation, brain ion homeostasis, production of neurotransmitters and etc), suggesting a general impairment in the central nervous system. Meanwhile, TPhP caused disorders in the gut microbiota. The relative abundance of Gammaproteobacteria and Alphaproteobacteria, which can influence the brain functions of host via the microbiota-gut-brain axis, were significantly altered by TPhP. Furthermore, the Redundancy analysis (RDA) revealed positive correlations between the intestinal genera Ruegeria, Roseivivax and Nautella and the dysregulated brain genes by TPhP. These results suggest that TPhP might impair the central nervous system of the O. melastigma larvae not only directly but also through the microbiota-gut-axis (indirectly), contributing to the suppressed locomotor activity. These findings enrich our mechanistic understanding of the toxicity of TPhP in fish larvae and shed preliminary light on the involvement of microbiota-gut-brain axis in the neurotoxicity of environmental pollutants.


Asunto(s)
Microbioma Gastrointestinal , Oryzias , Contaminantes Químicos del Agua , Animales , Eje Cerebro-Intestino , Larva , Organofosfatos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
16.
Sci Total Environ ; 814: 151923, 2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-34838547

RESUMEN

The spatial distribution and composition of microplastics in near-surface water (8 m) was investigated from the East Asian Seas to the Arctic Central Basin. Microplastics were detected in 93.9% of the sampling sites. Abundances ranged from 0.48 to 7.62 items/m3, with an average abundance of 2.91 ± 1.93 items/m3. The highest average abundance was observed in the Arctic Central Basin. Polyester (PET) was the dominant type, accounting for 71.3% of total microplastics, followed by rayon or cellophane and polytetrafluoroethylene (PTFE). Microplastics < 2 mm accounted for 81.9% of total particles. Its distribution peaked in the 1-2 mm size range. The 0.30-2 mm fibers were the most abundant. In the East Asian Seas, the abundance was significantly negatively correlated with longitude, whereas the accumulation of microplastics was not observed in the northeastern sector of Japan Sea. Abundances of microplastics at sites located in the sub-Arctic and Arctic Oceans showed a significant positive relationship with latitude, indicating that the Arctic Ocean is a potential accumulation zone of microplastics. The findings of this study will provide systematical insights into distribution of microplastics and basic information for understanding the accumulation mechanism of microplastics in near-surface waters from the East Asian Seas to the Arctic Central Basin.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Regiones Árticas , Monitoreo del Ambiente , Océanos y Mares , Plásticos , Contaminantes Químicos del Agua/análisis
17.
Artículo en Inglés | MEDLINE | ID: mdl-36232030

RESUMEN

The present study illustrates zooplankton dynamics in relation to environmental factors from the surrounding area of Tiaowei Island based on ten seasonal sampling cruises over three years. A total of 116 species of zooplankton were collected with a predominance of Copepoda (mainly consisting of Centropagidae, Oithonidae, Acartia, Labidocera and Paracalanus), accounting for 31.6 % of the total number of species. The diversity indices indicated a relatively high richness, abundance and evenness of zooplankton ranging from 2.794 to 4.012 on the Shannon-Wiener index for each cruise. More than 20 species of Cnidaria medusae are found as gelatinous organisms, which not only compete with fish but also potentially cause disasters. Significant seasonal variations were detected in both the zooplankton structure and environmental variables. NMDS illustrated a highly overlapping community structure in spring, autumn and winter, while the zooplankton composition in the summer was different from that of the other three seasons with a higher diversity index. Meanwhile, out of thirteen environmental parameters, eight varied significantly among seasons but there were no significant variations among stations. The biota-environmental relationship following a redundancy analysis revealed that water temperature, pH, salinity, dissolved oxygen and suspended particulate composition were the main environmental parameters, seasonally impacting the zooplankton communities. Planktonic larvae (such as nauplius larvae and branchyura zoea) and some zooplankton (including Corophium sinensis and Oithonasimilis) were significantly vulnerable to the dynamics of suspended particulate composition and water temperature.


Asunto(s)
Copépodos , Zooplancton , Animales , China , Monitoreo del Ambiente , Oxígeno , Estaciones del Año , Agua
18.
Sci Total Environ ; 824: 153833, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35151752

RESUMEN

In this study, a novel and low-cost seawater-modified biochar (SBC) was fabricated via the pyrolysis of fir wood waste followed by co-precipitation modification using seawater as the Ca/Mg source. The co-precipitation pH was a vital factor during modification, and the optimal pH was 10.50 according to calculations using PHREEQC 2.5 and experiments. The characterizations indicated that Ca and Mg were loaded on the SBC as irregular CaCO3 and nanoflake-like Mg(OH)2, respectively, with the latter dominating. The SBC exhibited a high maximum adsorption capacity of 181.07 mg/g for phosphate, calculated using the Langmuir model, excellent adsorption performance under acidic and neutral conditions (pH = 3.00-7.00), and remarkable selectivity against Cl-, NO3-, and SO42-. The presence of HCO3- promoted adsorption. The mechanisms behind phosphate adsorption involved electrostatic attraction, ligand exchange, precipitation, and inner-sphere complexation. Mg, rather than Ca, was served as the main adsorptive sites for phosphate. Additionally, the feasibility of treating real-world wastewater was tested in batch (using SBC powders) and fixed-bed column (using SBC granules) experiments. The results indicate that the SBC powders could reduce the phosphate concentration from 1.26 mg P/L to below 0.5 mg P/L at a low dose of 0.50 g/L, and the SBC granules exhibited a high removal efficiency with excellent recyclability; the capacity still remained at 78.92% of the initial capacity after five adsorption-desorption runs. Furthermore, the modification process almost did not increase the production cost of the SBC, which was estimated to be 0.41 $/kg. Our results demonstrate that seawater is a low-cost and efficient modifier for biochar modification, and the resultant SBC demonstrates great potential for treating actual phosphate-containing wastewater.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Adsorción , Carbón Orgánico , Cinética , Fosfatos , Polvos , Agua de Mar , Contaminantes Químicos del Agua/análisis
19.
Huan Jing Ke Xue ; 43(4): 2007-2017, 2022 Apr 08.
Artículo en Zh | MEDLINE | ID: mdl-35393824

RESUMEN

Bacteria play a key role in the removal of pollutants and nutrients in constructed wetlands. DNA and RNA high-throughput sequencing was used to investigate the diversity, metabolic activity, and function of bacteria in aquaculture wastewater and in constructed wetlands treated by different aeration levels. The results revealed that:① a total of 4042 operational taxonomic units (OTUs) were detected in aquaculture wastewater and constructed wetland treatment groups. α-Proteobacteria, γ-Proteobacteria, and Bacteroidia were the most diverse groups, and the constructed wetlands aeration treatment increased the bacterial diversity to a variable extent; ② α-Proteobacteria, γ-Proteobacteria, Bacteroidia, and Actinobacteria were the dominant groups both in the DNA and RNA sequencing results, and the metabolic activities of these four groups were significantly affected by the concentration of total nitrogen (TN) and nitrate nitrogen (NO3--N) in our study. ③ According to the FAPROTAX database, 56 bacterial functional groups were detected in our study, mainly including:chemoheterotrophy, aerobic chemoheterotrophy, fermentation, intracellular parasites, dark hydrogen oxidation, phototrophy, photoheterotrophy, and nitrate reduction. Functions related to the nitrogen cycle were observed in the results of function annotation, suggesting the important role of bacterial communities in the removal of nitrogen nutrients in constructed wetlands. These results will improve the understanding of bacterial community structures and functions during nutrient removal in aerated constructed wetlands.


Asunto(s)
Aguas Residuales , Humedales , Bacterias/genética , Nitratos , Nitrógeno/análisis , Eliminación de Residuos Líquidos/métodos
20.
Sci Total Environ ; 806(Pt 1): 150530, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34844325

RESUMEN

Sediment has been considered as an important sink for microplastics (MPs), but there are limited reports about the spatial and temporal variability of MPs in sediment from the Arctic Ocean. Furthermore, understanding is lacking on the correlation between Arctic sea ice variation and MP abundance in sediment. This study aimed to assess the MP contamination in the sediment from the Chukchi Sea over five years through three voyages (in 2016, 2018, and 2020). The MP abundances in the sediments from the Chukchi Plateau and Chukchi Shelf over five years ranged from 33.66 ± 15.08 to 104.54 ± 28.07 items kg-1 dry weight (DW) and 20.63 ± 6.71 to 55.64 ± 22.61 items kg-1 DW, respectively. The MP levels from the Chukchi Sea were lower than those from the Eastern Arctic Ocean. Our findings suggest that the Chukchi Plateau is an accumulation zone for fibers related to fishing gear and textiles under the dual influence of the Pacific and Atlantic Ocean currents. However, the reduction of these fibers in the sediment from the Chukchi Shelf might be related to bottom currents, sediment resuspension, and biomass. Moreover, the MP abundance in the sediment from the Chukchi Sea was positively correlated with the reduction of Arctic sea ice, suggesting that the melting sea ice contributes to the increase in MP levels in the sediment. The increase in blue MPs from the Chukchi Plateau over time might be attributed to melting sea ice or intense fishing activity, whereas the increase of the smallest MPs in this region could be owing to the breakdown of larger plastics during long-distance transport or the easier settlement of smaller MPs. Further time-series investigations are urgently required to improve the understanding of the environmental fate and transport of MPs among the different Arctic environmental compartments.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Regiones Árticas , Monitoreo del Ambiente , Cubierta de Hielo , Plásticos , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA