RESUMEN
Polycomb repressive complex 2 (PRC2) mediates H3K27me3 deposition, which is thought to recruit canonical PRC1 (cPRC1) via chromodomain-containing CBX proteins to promote stable repression of developmental genes. PRC2 forms two major subcomplexes, PRC2.1 and PRC2.2, but their specific roles remain unclear. Through genetic knockout (KO) and replacement of PRC2 subcomplex-specific subunits in naïve and primed pluripotent cells, we uncover distinct roles for PRC2.1 and PRC2.2 in mediating the recruitment of different forms of cPRC1. PRC2.1 catalyzes the majority of H3K27me3 at Polycomb target genes and is sufficient to promote recruitment of CBX2/4-cPRC1 but not CBX7-cPRC1. Conversely, while PRC2.2 is poor at catalyzing H3K27me3, we find that its accessory protein JARID2 is essential for recruitment of CBX7-cPRC1 and the consequent 3D chromatin interactions at Polycomb target genes. We therefore define distinct contributions of PRC2.1- and PRC2.2-specific accessory proteins to Polycomb-mediated repression and uncover a new mechanism for cPRC1 recruitment.
Asunto(s)
Histonas , Complejo Represivo Polycomb 2 , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Histonas/genética , Histonas/metabolismo , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/metabolismo , Cromatina/genéticaRESUMEN
Polycomb repressive complex 2 (PRC2) is composed of EED, SUZ12, and EZH1/2 and mediates mono-, di-, and trimethylation of histone H3 at lysine 27. At least two independent subcomplexes exist, defined by their specific accessory proteins: PRC2.1 (PCL1-3, EPOP, and PALI1/2) and PRC2.2 (AEBP2 and JARID2). We show that PRC2.1 and PRC2.2 share the majority of target genes in mouse embryonic stem cells. The loss of PCL1-3 is sufficient to evict PRC2.1 from Polycomb target genes but only leads to a partial reduction of PRC2.2 and H3K27me3. Conversely, disruption of PRC2.2 function through the loss of either JARID2 or RING1A/B is insufficient to completely disrupt targeting of SUZ12 by PCLs. Instead, the combined loss of both PRC2.1 and PRC2.2 is required, leading to the global mislocalization of SUZ12. This supports a model in which the specific accessory proteins within PRC2.1 and PRC2.2 cooperate to direct H3K27me3 via both synergistic and independent mechanisms.
Asunto(s)
Cromatina/metabolismo , Histonas/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Procesamiento Proteico-Postraduccional , Animales , Sitios de Unión , Línea Celular Tumoral , Cromatina/genética , Humanos , Metilación , Ratones , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/metabolismo , Complejo Represivo Polycomb 2/genética , Unión Proteica , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismoRESUMEN
The polycomb repressive complex 2 (PRC2) consists of core subunits SUZ12, EED, RBBP4/7, and EZH1/2 and is responsible for mono-, di-, and tri-methylation of lysine 27 on histone H3. Whereas two distinct forms exist, PRC2.1 (containing one polycomb-like protein) and PRC2.2 (containing AEBP2 and JARID2), little is known about their differential functions. Here, we report the discovery of a family of vertebrate-specific PRC2.1 proteins, "PRC2 associated LCOR isoform 1" (PALI1) and PALI2, encoded by the LCOR and LCORL gene loci, respectively. PALI1 promotes PRC2 methyltransferase activity in vitro and in vivo and is essential for mouse development. Pali1 and Aebp2 define mutually exclusive, antagonistic PRC2 subtypes that exhibit divergent H3K27-tri-methylation activities. The balance of these PRC2.1/PRC2.2 activities is required for the appropriate regulation of polycomb target genes during differentiation. PALI1/2 potentially link polycombs with transcriptional co-repressors in the regulation of cellular identity during development and in cancer.
Asunto(s)
Complejo Represivo Polycomb 2/genética , Proteínas Represoras/genética , Vertebrados/genética , Secuencia de Aminoácidos , Animales , Diferenciación Celular/genética , Línea Celular , Células HEK293 , Histonas/genética , Humanos , Metilación , Metiltransferasas/genética , Ratones , Neoplasias/genética , Alineación de SecuenciaRESUMEN
PURPOSE: Extracranial malignant rhabdoid tumors (eMRT) are a challenging entity. Despite the use of multimodal treatment approaches, therapy failure occurs in 55% to 67% of these. Molecular markers for identification of patients at increased risk for relapse or refractory (R/R) disease are not available. Clinical characteristics may only insufficiently predict the individual course of disease. EXPERIMENTAL DESIGN: Using the EU-RHAB database, we analyzed a cohort of 121 patients with eMRT clinically. For 81 patients, molecular and clinical data were available, which were further complemented with publicly available DNA molecular data from 92 eMRTs. We aimed to delineate molecular risk factors by dissecting the DNA methylome of these tumors. Moreover, we establish clinical characteristics and treatment details of R/R disease in a subcohort of 80 patients. RESULTS: Using consensus hierarchical clustering, we identified three distinct subgroups, one of which (eMRT standard risk) was associated with significantly improved survival, irrespective of germline status and/or localization. At the transcriptome level, this subgroup was characterized by an overexpression of genes involved in muscle development. A relevant proportion of patients developed distant relapses or progressions; the median time to the event was 4 months, underlining the need for early identification and risk stratification of R/R disease. The overall survival was significantly decreased in patients with progressive disease when compared with relapse cases, and reaching complete remission during salvage therapy provided a survival benefit. CONCLUSIONS: Our analysis of eMRT in this comprehensive cohort provides novel insights into the patterns of relapse and integrates molecular and clinical risk factors to guide clinical decision-making.
Asunto(s)
Tumor Rabdoide , Humanos , Tumor Rabdoide/genética , Tumor Rabdoide/patología , Tumor Rabdoide/terapia , Masculino , Femenino , Factores de Riesgo , Preescolar , Biomarcadores de Tumor/genética , Lactante , Niño , Pronóstico , Metilación de ADN , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Adolescente , Transcriptoma , Perfilación de la Expresión GénicaRESUMEN
ATRT is a highly aggressive and rare pediatric CNS tumor of very young children. Its genetic hallmark is bi-allelic inactivation of SMARCB1 encoding INI1. Rarely SMARCA4 encoding BRG1 is affected. Up to 30% are associated with constitutional heterozygous pathogenic variants in one of the two genes, giving rise to the Rhabdoid-Tumor-Predisposition-Syndromes (RTPS) 1 and 2. Characteristic DNA methylation profiles distinguish ATRT from other SMARCB1-deficient entities. Three distinct subtypes ATRT-MYC, -TYR, and -SHH are on record. ATRT-SHH may be further divided into the subgroups ATRT-SHH1A, -SHH1B, and -SHH2. The cure of ATRT remains challenging, notwithstanding an increasing understanding of molecular pathomechanisms and genetic background. The implementation of multimodal institutional treatment protocols has improved prognosis. Regardless of treatment approaches, clinical risk factors such as age, metastases, and DNA methylation subtype affect survival probability. We provide a critical appraisal of current conventional multimodal regimens and emerging targeted treatment approaches investigated in clinical trials and entity-specific registries. Intense treatment approaches featuring radiotherapy (RT) and high-dose chemotherapy (HDCT) face the difficulty of balancing tumor control and treatment-related toxicity. Current approaches focus on minimizing radiation fields by proton beam therapy or to withhold RT in HDCT-only approaches. Still, a 40-75% relapse rate upon first-line treatment reveals the need for novel treatment strategies in primary and even more in recurrent/refractory (r/r) disease. Among targeted treatments, immune checkpoint inhibitors and epigenetically active agents appear most promising. Success remains limited in single agent approaches. We hypothesize that mechanism-informed combination therapy will enhance response, as the low mutational burden of ATRT may contribute to acquiring resistance to single targeted agents. As DNA methylation group-specific gene expression profiles appear to influence response to distinct agents, the future treatment of ATRT should respect clinical and biological heterogeneity in risk group adjusted treatment protocols.