Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cell Biochem ; 113(8): 2607-21, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22422629

RESUMEN

The nuclear positioning of mammalian genes often correlates with their functional state. For instance, the human cystic fibrosis transmembrane conductance regulator (CFTR) gene associates with the nuclear periphery in its inactive state, but occupies interior positions when active. It is not understood how nuclear gene positioning is determined. Here, we investigated trichostatin A (TSA)-induced repositioning of CFTR in order to address molecular mechanisms controlling gene positioning. Treatment with the histone deacetylase (HDAC) inhibitor TSA induced increased histone acetylation and CFTR repositioning towards the interior within 20 min. When CFTR localized in the nuclear interior (either after TSA treatment or when the gene was active) consistent histone H3 hyperacetylation was observed at a CTCF site close to the CFTR promoter. Knockdown experiments revealed that CTCF was essential for perinuclear CFTR positioning and both, CTCF knockdown as well as TSA treatment had similar and CFTR-specific effects on radial positioning. Furthermore, knockdown experiments revealed that also A-type lamins were required for the perinuclear positioning of CFTR. Together, the results showed that CTCF, A-type lamins and an active HDAC were essential for perinuclear positioning of CFTR and these components acted on a CTCF site adjacent to the CFTR promoter. The results are consistent with the idea that CTCF bound close to the CFTR promoter, A-type lamins and an active HDAC form a complex at the nuclear periphery, which becomes disrupted upon inhibition of the HDAC, leading to the observed release of CFTR.


Asunto(s)
Núcleo Celular/metabolismo , Fibrosis Quística/metabolismo , Histona Desacetilasas/metabolismo , Laminas/metabolismo , Acetilación , Línea Celular , Inmunoprecipitación de Cromatina , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística , Células HeLa , Histona Desacetilasas/genética , Humanos , Immunoblotting , Inmunoprecipitación , Laminas/genética , Reacción en Cadena de la Polimerasa , Interferencia de ARN
2.
Tissue Eng Part A ; 18(3-4): 262-76, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21854258

RESUMEN

Bioartificial kidneys (BAKs) contain renal cells, and primary human renal proximal tubule cells (HPTCs) have been applied in clinical trials with BAKs. Cell performance within the device is critical. HPTC performance is often compromised under in vitro conditions because of dedifferentiation, transdifferentiation, and tubule formation on substrate surfaces. Herein we tested whether treatments with human recombinant bone morphogenetic protein (BMP)-2 or BMP-7 would improve HPTC performance. We found that both growth factors improved HPTC performance, but more consistent results were obtained with BMP-7. The effects were strongly concentration dependent, and for BMP-7, 25 ng/mL was the optimal concentration, which improved HPTC performance under static and under bioreactor conditions. As an alternative to supplementation with the purified growth factor, we generated HPTCs secreting human recombinant BMP-7. BMP-7 secreted by the cells was bioactive and improved the functional performance of HPTCs, in agreement with our other findings. Together, the results suggested that either supplementation with purified BMP-7 or BMP-7-producing cells could be used to improve cell performance in BAKs. BAKs with BMP-7-producing cells could also be used to deliver the growth factor to kidney patients. Our results suggested that the amount of BMP-7 produced by HPTCs would be sufficient for therapeutic applications.


Asunto(s)
Proteína Morfogenética Ósea 2/farmacología , Proteína Morfogenética Ósea 7/metabolismo , Túbulos Renales Proximales/citología , Riñones Artificiales , Ingeniería de Tejidos/métodos , Factor de Crecimiento Transformador beta/farmacología , Actinas/metabolismo , Fosfatasa Alcalina/metabolismo , Animales , Reactores Biológicos , Células Cultivadas , Epitelio/efectos de los fármacos , Epitelio/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Ingeniería Genética , Humanos , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/enzimología , Ratones , Especificidad de Órganos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Osteogénesis/genética , Fosforilación/efectos de los fármacos , Proteínas Recombinantes/farmacología , Proteínas Smad/metabolismo , gamma-Glutamiltransferasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA