Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Mol Biol ; 114(5): 104, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39316226

RESUMEN

Fruit color is a key feature of fruit quality, primarily influenced by anthocyanin or carotenoid accumulation or chlorophyll degradation. Adapting the pigment content is crucial to improve the fruit's nutritional and commercial value. Genetic factors along with other environmental components (i.e., light, temperature, nutrition, etc.) regulate fruit coloration. The fruit coloration process is influenced by plant hormones, which also play a vital role in various physiological and biochemical metabolic processes. Additionally, phytohormones play a role in the regulation of a highly conserved transcription factor complex, called MBW (MYB-bHLH-WD40). The MBW complex, which consists of myeloblastosis (MYB), basic helix-loop-helix (bHLH), and WD40 repeat (WDR) proteins, coordinates the expression of downstream structural genes associated with anthocyanin formation. In fruit production, the application of plant hormones may be important for promoting coloration. However, concerns such as improper concentration or application time must be addressed. This article explores the molecular processes underlying pigment formation and how they are influenced by various plant hormones. The ABA, jasmonate, and brassinosteroid increase anthocyanin and carotenoid formation, but ethylene, auxin, cytokinin, and gibberellin have positive as well as negative effects on anthocyanin formation. This article establishes the necessary groundwork for future studies into the molecular mechanisms of plant hormones regulating fruit color, ultimately aiding in their effective and scientific application towards fruit coloration.


Asunto(s)
Antocianinas , Frutas , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Frutas/genética , Frutas/metabolismo , Antocianinas/metabolismo , Pigmentación/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Carotenoides/metabolismo , Color
2.
J Gene Med ; 26(1): e3591, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37721116

RESUMEN

BACKGROUND: Intellectual disability (ID) can be associated with different syndromes such as Rubinstein-Taybi syndrome (RSTS) and can also be related to conditions such as metabolic encephalomyopathic crises, recurrent,with rhabdomyolysis, cardiac arrhythmias and neurodegeneration. Rare congenital RSTS1 (OMIM 180849) is characterized by mental and growth retardation, significant and duplicated distal phalanges of thumbs and halluces, facial dysmorphisms, and an elevated risk of malignancies. Microdeletions and point mutations in the CREB-binding protein (CREBBP) gene, located at 16p13.3, have been reported to cause RSTS. By contrast, TANGO2-related metabolic encephalopathy and arrhythmia (TRMEA) is a rare metabolic condition that causes repeated metabolic crises, hypoglycemia, lactic acidosis, rhabdomyolysis, arrhythmias and encephalopathy with cognitive decline. Clinicians need more clinical and genetic evidence to detect and comprehend the phenotypic spectrum of this disorder. METHODS: Exome sequencing was used to identify the disease-causing variants in two affected families A and B from District Kohat and District Karak, Khyber Pakhtunkhwa. Affected individuals from both families presented symptoms of ID, developmental delay and behavioral abnormalities. The validation and co-segregation analysis of the filtered variant was carried out using Sanger sequencing. RESULTS: In the present study, two families (A and B) exhibiting various forms of IDs were enrolled. In Family A, exome sequencing revealed a novel missense variant (NM 004380.3: c.4571A>G; NP_004371.2: p.Lys1524Arg) in the CREBBP gene, whereas, in Family B, a splice site variant (NM 152906.7: c.605 + 1G>A) in the TANGO2 gene was identified. Sanger sequencing of both variants confirmed their segregation with ID in both families. The in silico tools verified the aberrant changes in the CREBBP protein structure. Wild-type and mutant CREBBP protein structures were superimposed and conformational changes were observed likely altering the protein function. CONCLUSIONS: RSTS and TRMEA are exceedingly rare disorders for which specific clinical characteristics have been clearly established, but more investigations are underway and required. Multicenter studies are needed to increase our understanding of the clinical phenotypes, mainly showing the genotype-phenotype associations.


Asunto(s)
Discapacidad Intelectual , Rabdomiólisis , Síndrome de Rubinstein-Taybi , Humanos , Proteína de Unión a CREB/genética , Proteína de Unión a CREB/química , Discapacidad Intelectual/genética , Mutación , Mutación Missense , Fenotipo , Rabdomiólisis/genética , Síndrome de Rubinstein-Taybi/genética , Síndrome de Rubinstein-Taybi/diagnóstico , Síndrome de Rubinstein-Taybi/patología
3.
BMC Plant Biol ; 24(1): 313, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654158

RESUMEN

The enzyme glutamine synthetase (GLN) is mainly responsible for the assimilation and reassimilation of nitrogen (N) in higher plants. Although the GLN gene has been identified in various plants, there is little information about the GLN family in cotton (Gossypium spp.). To elucidate the roles of GLN genes in cotton, we systematically investigated and characterized the GLN gene family across four cotton species (G. raimondii, G. arboreum, G. hirsutum, and G. barbadense). Our analysis encompassed analysis of members, gene structure, cis-element, intragenomic duplication, and exploration of collinear relationships. Gene duplication analysis indicated that segmental duplication was the primary driving force for the expansion of the GhGLN gene family. Transcriptomic and quantitative real-time reverse-transcription PCR (qRT-PCR) analyses indicated that the GhGLN1.1a gene is responsive to N induction treatment and several abiotic stresses. The results of virus-induced gene silencing revealed that the accumulation and N use efficiency (NUE) of cotton were affected by the inactivation of GhGLN1.1a. This study comprehensively analyzed the GhGLN genes in Gossypium spp., and provides a new perspective on the functional roles of GhGLN1.1a in regulating NUE in cotton.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Glutamato-Amoníaco Ligasa , Gossypium , Nitrógeno , Proteínas de Plantas , Duplicación de Gen , Genes de Plantas , Glutamato-Amoníaco Ligasa/genética , Glutamato-Amoníaco Ligasa/metabolismo , Gossypium/genética , Gossypium/metabolismo , Familia de Multigenes , Nitrógeno/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Mol Biol Rep ; 51(1): 433, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38520591

RESUMEN

BACKGROUND: Glioblastoma multiforme (GBM), the most prevalent subgroup of neuroepithelial tumors, is characterized by dismal overall survival (OS). Several studies have linked O6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation to OS in GBM patients. However, MGMT methylation frequencies vary geographically and across ethnicities, with limited data for South Asian populations, including Pakistan. This study aimed to analyze MGMT promoter methylation in Pakistani GBM patients. METHODS: Consecutive primary GBM patients diagnosed ≥ 18 years-of-age, with no prior chemotherapy or radiotherapy history, were retrospectively selected. DNA was isolated from formalin-fixed-paraffin-embedded tissues. MGMT promoter methylation was analyzed using methylation-specific PCR. Clinical, pathological, and treatment data were assessed using Fisher's exact/Chi-squared tests. OS was calculated using Kaplan-Meier analysis in SPSS 27.0.1. RESULTS: The study included 48 GBM patients, comprising 38 (79.2%) males and 10 (20.8%) females. The median diagnosis age was 49.5 years (range 18-70). MGMT methylation was observed in 87.5% (42/48) of all cases. Patients with MGMT methylation undergoing radiotherapy or radiotherapy plus chemotherapy exhibited significantly improved median OS of 7.2 months (95% CI, 3.7-10.7; P < 0.001) and 16.9 months (95% CI, 15.9-17.9; P < 0.001), respectively, compared to those undergoing surgical resection only (OS: 2.2 months, 95% CI, 0.8-3.6). CONCLUSION: This is the first comprehensive study highlighting a predominance of MGMT methylation in Pakistani GBM patients. Furthermore, our findings underscore the association of MGMT methylation with improved OS across diverse treatment modalities. Larger studies are imperative to validate our findings for better management of Pakistani GBM patients.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Masculino , Femenino , Humanos , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Glioblastoma/patología , Pakistán , Estudios Retrospectivos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Metilasas de Modificación del ADN/genética , Metilación de ADN/genética , Enzimas Reparadoras del ADN/genética , ADN , Antineoplásicos Alquilantes/uso terapéutico , Proteínas Supresoras de Tumor/genética
5.
Bioprocess Biosyst Eng ; 47(5): 597-620, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38456898

RESUMEN

The use of pesticides and the subsequent accumulation of residues in the soil has become a worldwide problem. Organochlorine (OC) pesticides have spread widely in the environment and caused contamination from past agricultural activities. This article reviews the bioremediation of pesticide compounds in soil using microbial enzymes, including the enzymatic degradation pathway and the recent development of enzyme-mediated bioremediation. Enzyme-mediated bioremediation is divided into phase I and phase II, where the former increases the solubility of pesticide compounds through oxidation-reduction and hydrolysis reactions, while the latter transforms toxic pollutants into less toxic or nontoxic products through conjugation reactions. The identified enzymes that can degrade OC insecticides include dehalogenases, phenol hydroxylase, and laccases. Recent developments to improve enzyme-mediated bioremediation include immobilization, encapsulation, and protein engineering, which ensure its stability, recyclability, handling and storage, and better control of the reaction.


Asunto(s)
Biodegradación Ambiental , Plaguicidas , Microbiología del Suelo , Contaminantes del Suelo , Plaguicidas/química , Plaguicidas/metabolismo , Contaminantes del Suelo/química , Contaminantes del Suelo/metabolismo , Suelo/química
6.
Plant Foods Hum Nutr ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39150636

RESUMEN

The fruit of the jujube tree is high in nutrients and has various health benefits. China is a major producer of jujube, and it is now cultivated all around the world. Numerous studies have demonstrated the nutritional value and potential health advantages of bioactive compounds found in the jujube tree. Furthermore, the jujube tree has a remarkable 7000-year agricultural history. The jujube plant has developed a rich gene pool, making it a valuable resource for germplasm. Different studies have focused on the developmental stages of jujube fruits to identify the optimal time for harvest and to assess the changes in their bioactive natural compounds or products during the process of development but the molecular mechanism underlying the production of bioactive natural products in Z. jujuba is still poorly understood. Moreover, the potential differential expressed genes (DEGs) identified as responsible for the synthesis of these compounds should be further functionally verified. It has been noticed that the contents of total flavonoids, total phenolic, and vitamin C increase significantly during the ripening process, while the contents of soluble sugars and organic acids decrease gradually. In this review, we have also scrutinized the challenges that hinder the utilization of jujube fruit resources and suggested potential areas for further research. As such, our review serves as a valuable resource for the future development of jujube-based nutritional compounds and the incorporation of their nutritional elements into the functional foods industry.

7.
Pak J Med Sci ; 40(1Part-I): 64-67, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38196455

RESUMEN

Objective: To determine frequencies of causes and renal outcomes of pregnancy related acute kidney injury. Method: This descriptive case series study was conducted in Nephrology unit of a tertiary care hospital of Peshawar, from 1st August 2021 to 31st July 2022.A total of 100 patients with acute kidney injury secondary to obstetric conditions were enrolled via non-probability consecutive sampling technique. While patients with pre-existing renal disease, those with renal stones, or having bilateral small kidneys on ultrasound were excluded from the study. Patients were followed till 12 weeks postpartum period. Underlying obstetrical causes and outcome at 12 weeks postnatal period were determined. Results: The mean age of sample of 100 cases was 29.29 ± 6.45. Mean serum creatinine at presentation was 6.5± 3.13. Majority of patient, 89% were multigravidas. Seventy eight percent patients required hemodialysis. Primary postpartum hemorrhage remained the commonest underlying cause of pregnancy related acute kidney injury in this study. The frequency of persistent renal failure in Pr-AKI (pregnancy related acute kidney injury) in this study was 14%. In about 66% of cases complete recovery occurred. All the underlying obstetrical causes, when adjusted for age, gravidity, place and mode of delivery, had no association with persistent renal failure. Conclusion: Primary postpartum hemorrhage is the predominant cause of pregnancy related acute kidney injury. By the end of 12 weeks postpartum, two third patients recover completely from pregnancy related acute renal injury.

8.
Malays J Med Sci ; 31(3): 149-159, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38984249

RESUMEN

Background: Existing research indicated a high prevalence of mental health issues among adolescents. Gender and parenting styles are two factors that may influence adolescents' mental health. Nonetheless, most published studies focused on either secondary school or university students. In contrast, there is a dearth of similar research involving pre-university students. This study aimed to determine the prevalence of mental disorders among pre-university students and their association with parenting styles. Methods: A cross-sectional study via online questionnaire survey was conducted among students from a pre-university college on the East Coast of Malaysia. Convenience sampling was used to recruit the participants. The questionnaire consisted of three parts: i) sociodemographic data, ii) the Parental Authority Questionnaire and Depression, and iii) the Anxiety and Stress Scale (DASS-21). An online invitation to answer the questionnaire was done via the Student Representative Council (SRC). Data were analysed using descriptive statistics and Pearson's chi-square test. Results: A total of 431 participants responded to the online survey. The prevalence of depression, anxiety and stress was 49.0% (n = 210), 68.0% (n = 293) and 37.6% (n = 162), respectively. In addition, father's educational level (χ2 = 10.332, P = 0.001) and the authoritarian parenting style (χ2 = 10.099, P = 0.006) were significantly associated with mental health disorders among adolescents. Conclusion: The prevalence of mental disorders among pre-university students is relatively high. Pre-university admission mental health screening is vital for early detection and intervention of mental disorders among this vulnerable group. Further research is imperative to establish a comprehensive plan of action that targets parental involvement in managing adolescent mental health disorders.

9.
Breast Cancer Res Treat ; 202(2): 377-387, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37528266

RESUMEN

PURPOSE: Constitutional BRCA1 promoter methylation has been identified as a potential risk factor for breast cancer (BC) in the Caucasian population. However, this data is lacking for BC patients of Asian origin. Therefore, we assessed the contribution of constitutional BRCA1 promoter methylation in Pakistani BC patients. METHODS: A total of 385 BRCA1/2-negative index BC patients (197 early-onset BC (≤ 30 years), 152 familial BC, 17 familial BC and ovarian cancer, 19 male BC) and 107 healthy controls were screened for the constitutional BRCA1 promoter methylation by methylation-sensitive high-resolution melting assay. Overall, 131 patients displayed triple-negative BC (TNBC) and 254 non-TNBC phenotypes. The prevalence of BRCA1 promoter methylation was calculated based on clinicopathological characteristics using univariable and multivariable logistic regression models. RESULTS: Constitutional BRCA1 promoter methylation was identified in 19.5% (75/385) of BC patients and 13.1% (14/107) of controls. The frequency of methylation was higher in early-onset BC (23.4% vs. 13.1%, P = 0.035) and TNBC patients (29.0% vs. 13.1%, P = 0.004) compared to controls. Methylation was also more prevalent in patients with high-grade than low-grade tumors (21.7% vs. 12.2%, P = 0.034) and progesterone receptor (PR)-negative than PR-positive tumors (26.0% vs. 13.9%, P = 0.004). Constitutional BRCA1 promoter methylation remained independently associated with TNBC phenotype (odds ratio 1.99; 95% CI 1.12-3.54; P = 0.02) after adjusting for BC diagnosis age, tumor grade, ER, and PR status. CONCLUSION: Constitutional BRCA1 promoter methylation is associated with TNBC and can serve as a non-invasive blood-based biomarker for Pakistani TNBC patients.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Humanos , Masculino , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proteína BRCA1/genética , Pakistán/epidemiología , Metilación de ADN , Proteína BRCA2/genética , Neoplasias de la Mama Triple Negativas/epidemiología , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología
10.
BMC Neurol ; 23(1): 353, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37794328

RESUMEN

BACKGROUND: Intellectual disability (ID) is a condition that varies widely in both its clinical presentation and its genetic underpinnings. It significantly impacts patients' learning capacities and lowers their IQ below 70. The solute carrier (SLC) family is the most abundant class of transmembrane transporters and is responsible for the translocation of various substances across cell membranes, including nutrients, ions, metabolites, and medicines. The SLC13A3 gene encodes a plasma membrane-localized Na+/dicarboxylate cotransporter 3 (NaDC3) primarily expressed in the kidney, astrocytes, and the choroid plexus. In addition to three Na + ions, it brings four to six carbon dicarboxylates into the cytosol. Recently, it was discovered that patients with acute reversible leukoencephalopathy and a-ketoglutarate accumulation (ARLIAK) carry pathogenic mutations in the SLC13A3 gene, and the X-linked neurodevelopmental condition Christianson Syndrome is caused by mutations in the SLC9A6 gene, which encodes the recycling endosomal alkali cation/proton exchanger NHE6, also called sodium-hydrogen exchanger-6. As a result, there are severe impairments in the patient's mental capacity, physical skills, and adaptive behavior. METHODS AND RESULTS: Two Pakistani families (A and B) with autosomal recessive and X-linked intellectual disorders were clinically evaluated, and two novel disease-causing variants in the SLC13A3 gene (NM 022829.5) and the SLC9A6 gene (NM 001042537.2) were identified using whole exome sequencing. Family-A segregated a novel homozygous missense variant (c.1478 C > T; p. Pro493Leu) in the exon-11 of the SLC13A3 gene. At the same time, family-B segregated a novel missense variant (c.1342G > A; p.Gly448Arg) in the exon-10 of the SLC9A6 gene. By integrating computational approaches, our findings provided insights into the molecular mechanisms underlying the development of ID in individuals with SLC13A3 and SLC9A6 mutations. CONCLUSION: We have utilized in-silico tools in the current study to examine the deleterious effects of the identified variants, which carry the potential to understand the genotype-phenotype relationships in neurodevelopmental disorders.


Asunto(s)
Epilepsia , Discapacidad Intelectual , Microcefalia , Humanos , Discapacidad Intelectual/genética , Mutación , Epilepsia/complicaciones , Microcefalia/genética , Iones , Linaje
11.
Nanotechnology ; 35(8)2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37983910

RESUMEN

In this research, we utilized artificial neural networks along with the Levenberg-Marquardt algorithm (ANN-LMA) to interpret numerical computations related to the efficiency of heat transfer in a regenerative cooling channel of a rocket engine. We used a mixture of Kerosene and carbon nanotubes (CNTs) for this purpose, examining both single-wall carbon nanotubes and multi-wall carbon nanotubes. The primary equations were converted into a dimensionless form using a similarity transformation technique. To establish a reference dataset for ANN- LMA and to analyze the movement and heat transfer properties of CNTs, we employed a numerical computation method called bvp4c, which is a solver for boundary value problems in ordinary differential equations using finite difference schemes combined with the Lobatto IIIA algorithm in MATLAB mathematical software. The ANN- LMA method was trained, tested and validated using these reference datasets to approximate the solutions of the flow model under different scenarios involving various significant physical parameters. We evaluated the accuracy of the proposed ANN- LMA model by comparing its results with the reference outcomes. We validated the performance of ANN- LMA in solving the Kerosene-based flow with CNTs in a rocket engine through regression analysis, histogram studies, and the calculation of the mean square error. The comprehensive examination of parameters undertaken in this research endeavor is poised to provide invaluable support to aerospace engineers as they endeavor to craft regenerative equipment with optimal efficiency. The pragmatic implications of our study are wide-ranging, encompassing domains as diverse as aerospace technology, materials science, and artificial intelligence. This research holds the potential to catalyze progress across multiple sectors and foster the evolution of increasingly efficient and sustainable systems.

12.
Mol Biol Rep ; 50(5): 3985-3997, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36840848

RESUMEN

BACKGROUND: With increased urbanization and industrialization, modern life has led to an anthropogenic impact on the biosphere. Heavy metals pollution and pollutants from black liquor (BL) have caused severe effects on environment and living organisms. Bacterial biofilm has potential to remediate heavy metals and remove BL from the environment. Hence, this study was planned to investigate the potential of microbial biofilms for the bioremediation of heavy metals and BL polluted environments. METHODS AND RESULTS: Eleven biofilm forming bacterial strains (SB1, SB2, SC1, AF1, 5A, BC-1, BC-2, BC-3, BC-4, BC-5 and BC-6) were isolated and identified upto species level via 16S rRNA gene sequencing. Biofilm strains belonging to Bacillus and Lysinibacillus sphaericus were used to remediate heavy metals (Pb, Ni, Mn, Zn, Cu, and Co). Atomic absorption spectroscopy showed significantly high (P ≤ 0.05) bioremediation potential by L. sphaericus biofilm (1462.0 ± 0.67 µgmL-1) against zinc (Zn). Similarly, Pseudomonas putida biofilm significantly (P ≤ 0.05) decolourized (65.1%) BL. Fourier transform infrared (FTIR) analysis of treated heavy metals showed the shifting of major peaks (1637 & 1629-1647, 1633 & 1635-1643, and 1638-1633 cm-1) corresponding to specific amide groups due to C = O stretching. CONCLUSION: The study suggested that biofilm of the microbial flora from tanneries and pulp paper effluents possesses a strong potential for heavy metals bioremediation and BL decolourization. To our knowledge, this is the first report showing promising biofilm remediation potential of bacterial flora of tanneries and pulp-paper effluent from Kasur and Sheikhupura, Punjab, Pakistan, against heavy metals and BL.


Asunto(s)
Bacillus , Metales Pesados , Pseudomonas putida , Biodegradación Ambiental , ARN Ribosómico 16S/genética , Metales Pesados/análisis , Zinc/análisis , Pseudomonas putida/genética , Bacillus/genética , Biopelículas
13.
Mol Biol Rep ; 50(5): 4309-4316, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36920597

RESUMEN

BACKGROUND: The outbreak of coronavirus disease 2019 (COVID-19) has emerged as a serious public health emergency of global concern. Angiotensin converting enzyme 2 (ACE2) peptidase domain is important for the cellular entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Germline variants in ACE2 peptidase domain may influence the susceptibility for SARS-CoV-2 infection and disease severity in the host population. ACE2 genetic analysis among Caucasians showed inconclusive results. This is the first Asian study investigating the contribution of ACE2 germline variants to SARS-CoV-2 infection in Pakistani population. METHODS: In total, 442 individuals, including SARS-CoV-2-positive (n = 225) and SARS-CoV-2-negative (n = 217) were screened for germline variants in ACE2 peptidase domain (exons 2, 3, 9, and 10) using high resolution melting and denaturing high-performance liquid chromatography analyses followed by DNA sequencing of variant fragments. The identified variant was analyzed by in silico tools for potential effect on ACE2 protein. RESULTS: A missense variant, p.Lys26Arg, was identified in one SARS-CoV-2-positive (1/225; 0.4%) and three SARS-CoV-2-negative (3/217; 1.4%) individuals. No significant difference in the minor allele frequency of this variant was found among SARS-CoV-2-positive and SARS-CoV-2-negative individuals (1/313; 0.3% versus 3/328; 0.9%; P = 0.624), respectively. The SARS-CoV-2-positive patient carrying p.Lys26Arg showed mild COVID-19 disease symptoms. It was predicted as benign variant by in silico tool. No variant was detected in ACE2 residues important for binding of SARS-CoV-2 spike protein. CONCLUSION: The p.Lys26Arg variant may have no association with SARS-CoV-2 susceptibility in Pakistani population. Whole ACE2 gene screening is warranted to clarify its role in SARS-CoV-2 infection.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Humanos , Enzima Convertidora de Angiotensina 2/genética , COVID-19/genética , Pakistán/epidemiología , Unión Proteica , SARS-CoV-2/genética
14.
Hered Cancer Clin Pract ; 21(1): 22, 2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-37951914

RESUMEN

BACKGROUND: BRCA1 and BRCA2 (BRCA1/2) are the most frequently investigated genes among Caucasian pancreatic cancer patients, whereas limited reports are available among Asians. We aimed to investigate the prevalence of BRCA1/2 germline variants in Pakistani pancreatic cancer patients. METHODS: One hundred and fifty unselected and prospectively enrolled pancreatic cancer patients were comprehensively screened for BRCA1/2 germline variants using denaturing high-performance liquid chromatography and high-resolution melting analyses, followed by DNA sequencing of the variant fragments. The novel variants were analyzed for their pathogenic effect using in-silico tools. Potentially functional variants were further screened in 200 cancer-free controls. RESULTS: Protein truncating variant was detected in BRCA2 only, with a prevalence of 0.7% (1/150). A frameshift BRCA2 variant (p.Asp946Ilefs*14) was identified in a 71-year-old male patient of Pathan ethnicity, with a family history of abdominal cancer. Additionally, we found a novel variant in BRCA2 (p.Glu2650Gln), two previously reported variants in BRCA1 (p.Thr293Ser) and BRCA2 (p.Ile2296Leu) and a recurrent nonsense variant in BRCA2 (p.Lys3326Ter). These variants were classified as variants of uncertain significance (VUS). It is noteworthy that none of these VUS carriers had a family history of pancreatic or other cancers. CONCLUSIONS: In this first study, BRCA1/2 pathogenic variant is identified with a low frequency in pancreatic cancer patients from Pakistan. Comprehensive multigene panel testing is recommended in the Pakistani pancreatic cancer patients to enhance genetic understanding in this population.

15.
Hum Mutat ; 43(10): 1472-1489, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35815345

RESUMEN

Aminoacyl-tRNA synthetases (ARSs) are essential enzymes for faithful assignment of amino acids to their cognate tRNA. Variants in ARS genes are frequently associated with clinically heterogeneous phenotypes in humans and follow both autosomal dominant or recessive inheritance patterns in many instances. Variants in tryptophanyl-tRNA synthetase 1 (WARS1) cause autosomal dominantly inherited distal hereditary motor neuropathy and Charcot-Marie-Tooth disease. Presently, only one family with biallelic WARS1 variants has been described. We present three affected individuals from two families with biallelic variants (p.Met1? and p.(Asp419Asn)) in WARS1, showing varying severities of developmental delay and intellectual disability. Hearing impairment and microcephaly, as well as abnormalities of the brain, skeletal system, movement/gait, and behavior were variable features. Phenotyping of knocked down wars-1 in a Caenorhabditis elegans model showed depletion is associated with defects in germ cell development. A wars1 knockout vertebrate model recapitulates the human clinical phenotypes, confirms variant pathogenicity, and uncovers evidence implicating the p.Met1? variant as potentially impacting an exon critical for normal hearing. Together, our findings provide consolidating evidence for biallelic disruption of WARS1 as causal for an autosomal recessive neurodevelopmental syndrome and present a vertebrate model that recapitulates key phenotypes observed in patients.


Asunto(s)
Aminoacil-ARNt Sintetasas , Enfermedad de Charcot-Marie-Tooth , Triptófano-ARNt Ligasa , Aminoacil-ARNt Sintetasas/genética , Enfermedad de Charcot-Marie-Tooth/genética , Exones , Humanos , Mutación , Linaje , ARN de Transferencia/genética , Síndrome , Triptófano-ARNt Ligasa/genética
16.
Int J Cancer ; 151(3): 402-411, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35377489

RESUMEN

Knowledge of population specific BRCA1/2 founder mutations provides a valuable and cost-effective genetic testing strategy. Twenty-three recurrent BRCA1 mutations have been identified previously in 100 Pakistani breast and/or ovarian cancer families. These accounted for 72.5% of all BRCA1 mutations identified. In our study, we investigated whether these mutations (identified in ≥2 unrelated patients) have a common ancestral origin and estimated the ages of these mutations. Haplotype analyses were performed in 188 individuals (100 index patients, 88 relatives) from Pakistani breast/ovarian cancer families, all harboring one of the 23 recurrent BRCA1 mutations, and 90 healthy controls. Six microsatellite markers (D17S800, D17S1801, D17S855, D17S1322, D17S1323, and D17S951) were analyzed. Mutation ages were estimated using DMLE+2.3 software. An identical haplotype of different length was found in families harboring the same BRCA1 mutation and suggested founder effects for all 23 mutations. Sixteen founder mutations were ethnicity-specific: 15 occurred in families of Punjabi background and one in a family of Pathan background. The remaining seven mutations occurred in families with two ethnic backgrounds. All BRCA1 founder mutations were estimated to have arisen approximately 147 to 159 generations ago. Our findings suggest founder effects for all 23 recurrent BRCA1 mutations. This knowledge allows the design and development of a cost effective local genetic testing strategy in Pakistan.


Asunto(s)
Neoplasias de la Mama , Neoplasias Ováricas , Proteína BRCA1/genética , Neoplasias de la Mama/epidemiología , Carcinoma Epitelial de Ovario , Femenino , Efecto Fundador , Haplotipos , Humanos , Mutación , Neoplasias Ováricas/epidemiología , Neoplasias Ováricas/genética , Pakistán
17.
Biotechnol Appl Biochem ; 69(6): 2296-2303, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34826358

RESUMEN

Autosomal primary microcephaly (MCPH) is a heterogenetic disorder that affects brain's cerebral cortex size and leads to a reduction in the cranial vault. Along with the hallmark feature of reduced head circumference, microcephalic patients also exhibit a variable degree of intellectual disability as well. Genetic studies have reported 28 MCPH genes, most of which produce microtubule-associated proteins and are involved in cell division. Herein this study, 14 patients from seven Pashtun origin Pakistani families of primary microcephaly were analyzed. Mutation analysis was performed through targeted Sanger DNA sequencing on the basis of phenotype-linked genetic makeup. Genetic analysis in one family found a novel pathogenic DNA change in the abnormal spindle microtubule assembly (ASPM) gene (NM_018136.4:c.3871dupGA), while the rest of the families revealed recurrent nonsense mutation c.3978G>A (p.Trp1326*) in the same gene. The novel reported frameshift insertion presumably truncates the protein p.(Lys1291Glyfs*14) and deletes the N-terminus domains. Identification of novel ASPM-truncating mutation expands the mutational spectrum of the ASPM gene, while mapping of recurrent mutation c.3978G>A (p.Trp1326*) will aid in establishing its founder effect in the Khyber Pakhtunkhwa (KPK) inhabitant population of Pakistan and should be suggestively screened for premarital counseling of MCPH susceptible families. Most of the recruited families are related to first-degree consanguinity. Hence, all the family elders were counseled to avoid intrafamilial marriages.


Asunto(s)
Microcefalia , Humanos , Microcefalia/genética , Pakistán , Proteínas del Tejido Nervioso/genética , Mutación , Análisis de Secuencia de ADN
18.
Int J Mol Sci ; 23(22)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36430741

RESUMEN

The NPF (NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER FAMILY) transports various substrates, including nitrogen (N), which is essential for plant growth and development. Although many NPF homologs have been identified in various plants, limited studies on these proteins have been reported in cotton. This study identified 75, 71, and 150 NPF genes in Gossypium arboreum, G. raimondii, and G. hirsutum, respectively, via genome-wide analyses. The phylogenetic tree indicated that cotton NPF genes are subdivided into eight subgroups, closely clustered with Arabidopsis orthologues. The chromosomal location, gene structure, motif compositions, and cis-elements have been displayed. Moreover, the collinearity analysis showed that whole-genome duplication event has played an important role in the expansion and diversification of the NPF gene family in cotton. According to the transcriptome and qRT-PCR analyses, several GhNPFs were induced by the nitrogen deficiency treatment. Additional functional experiments revealed that virus-induced silencing (VIGS) of the GhNPF6.14 gene affects the growth and N absorption and accumulation in cotton. Thus, this study lays the foundation for further functional characterization of NPF genes in cotton.


Asunto(s)
Estudio de Asociación del Genoma Completo , Gossypium , Gossypium/metabolismo , Filogenia , Genoma de Planta , Familia de Multigenes , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nitrógeno/metabolismo
19.
Soc Work Health Care ; 61(4): 199-217, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35838128

RESUMEN

In 2020 Coronavirus disease (COVID-19) was identified in Australia. During the pandemic, as essential workers, hospital-based social workers have been on the frontline. This cross-sectional study examines the resilience of social workers during the COVID-19 pandemic, how the pandemic impacted on social work and lessons learnt. Hospital social workers working in three states, namely Victoria, Queensland, and New South Wales were invited to participate in an online web-based survey, providing non-identifiable demographic details and information a) relating to their proximity to COVID-19, b) their degree of resilience (CD-RISC-2), c) professional quality of life, d) perceived social support, e) physical health, f) professional and personal growth during the pandemic, and g) impacts of COVID-19 on their practice. Basic descriptive statistics were computed for variables of interest. Within group, comparisons were made using paired t-tests or one-way ANOVAs for continuous variables as appropriate to investigate possible interstate differences. Regression analyses were conducted to determine which factors contribute to resilience. Social workers, during the pandemic, whether working under the constraints of lockdown or not, demonstrated high levels of resilience. These levels were similar across the three states, unaffected by the degree of infection in the community, indicating that as a group, social workers have high innate levels of resilience. This study provides an in-depth understanding of the impact of COVID-19 on hospital social workers, the long-term impact of the pandemic on social work practice, and potentially useful lessons learnt for the future.


Asunto(s)
COVID-19 , Pandemias , COVID-19/epidemiología , Control de Enfermedades Transmisibles , Estudios Transversales , Atención a la Salud , Humanos , Calidad de Vida , Trabajadores Sociales , Victoria
20.
Physiol Mol Biol Plants ; 28(10): 1939-1953, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36484032

RESUMEN

Polyploidization has played a major role in plant evolution and can alter plant morphology, phenology, and ecology within only one or a few generations. Ziziphus species are economically as well as nutritionally important fruit-yielding trees. Identification of genotypes with unique traits or those with higher ploidy levels or a broader genetic base could lead to further improvements within the species. The current study has assessed the ploidy levels in the Ziziphus species (Ziziphus jujuba Mill. and Ziziphus nummularia (Burm. f. Wight & Arn) with phenotypic traits, flow cytometry, and chromosomal count as well as with SSRs markers. Morphological traits were inferred to be the most important drivers of trait variations among the investigated genotypes. The total sugar, total cAMPs, titratable acid, and chlorophyll (a, b, and total) were also significantly different in contrast with diploid plants, which showed that tetraploid Ziziphus had the potential to increase nutritional contents. Out of twenty (20), five (5) Z. jujuba genotypes (ZJL-9, ZJL-12, ZJL-17, ZJL-18, and ZJL-19) were found tetraploid 2n = 4x = 48, with genome size ranging from 965.9 to1238.8 Mb that was significantly higher than the tetraploid Z. jujuba Mill. variety Dongzao. Similarly, Z. nummularia ZNL-07 to ZNL-15 have found tetraploid 2n = 4x = 72 with genomic sizes ranging from 1152.2 to 1746.8 Mb respectively. Simple sequence repeats (SSRs) marker was applied to assess the genetic relationship within Ziziphus genotypes. To the best of our understanding, this is the first report on the identification of naturalized random tetraploids within the Pakistani Ziziphus species. This study provides important insights into the genomic architecture of Ziziphus species with implications for classification, conservation, and improvements of Ziziphus germplasm resources.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA