RESUMEN
Sphinganine-1-phosphate lyase (Dpl1p) is a highly conserved enzyme of sphingolipid metabolism that catalyzes the irreversible degradation of sphingoid base phosphates, which are potent signaling molecules. Sphingoid base phosphates play a vital role in cell survival, proliferation, migration, heat stress, and cell wall integrity pathways. Little is known about the structure and regulation of Dpl1p. In this study, we have undertaken a combined computational modeling and mutagenesis approach for structure-function analysis of Dpl1p to discover possible modes of regulation. Our results identify important residues for catalysis in Dpl1p and confirm it as an integral endoplasmic reticulum-resident protein. Results further indicate that Dpl1p is most likely not regulated spatially. Importantly, we demonstrate that Dpl1p exists as an oligomer and that polar residues in its transmembrane domain are required for its full function in vivo but not for its localization or for its catalytic activity in vitro.
Asunto(s)
Aldehído-Liasas/química , Aldehído-Liasas/metabolismo , Aldehído-Liasas/genética , Secuencia de Aminoácidos , Sitios de Unión , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Glicosilación , Modelos Moleculares , Datos de Secuencia Molecular , Mutación/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismoRESUMEN
Ubiquitination is a reversible posttranslational modification of cellular proteins, in which a 76-amino acid polypeptide, ubiquitin, is primarily attached to the epsilon-amino group of lysines in target proteins. Ubiquitination is a major player in regulating a broad host of cellular processes, including cell division, differentiation, signal transduction, protein trafficking, and quality control. Aberrations in the ubiquitination system are implicated in pathogenesis of some diseases, certain malignancies, neurodegenerative disorders, and pathologies of the inflammatory immune response. Here, we discuss the proteasome-independent roles of ubiquitination in signaling and endocytosis.
Asunto(s)
Endocitosis , Proteínas/metabolismo , Transducción de Señal , Ubiquitina/metabolismo , Animales , Replicación del ADN , Enfermedad , Endosomas/metabolismo , Humanos , Modelos Biológicos , Neoplasias/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Señales de Clasificación de Proteína , Transporte de Proteínas , Transcripción GenéticaRESUMEN
The Target of Rapamycin (TOR) protein is a Ser/Thr kinase that functions in two distinct multiprotein complexes: TORC1 and TORC2. These conserved complexes regulate many different aspects of cell growth in response to intracellular and extracellular cues. Here we report that the AGC kinase Sch9 is a substrate of yeast TORC1. Six amino acids in the C terminus of Sch9 are directly phosphorylated by TORC1. Phosphorylation of these residues is lost upon rapamycin treatment as well as carbon or nitrogen starvation and transiently reduced following application of osmotic, oxidative, or thermal stress. TORC1-dependent phosphorylation is required for Sch9 activity, and replacement of residues phosphorylated by TORC1 with Asp/Glu renders Sch9 activity TORC1 independent. Sch9 is required for TORC1 to properly regulate ribosome biogenesis, translation initiation, and entry into G0 phase, but not expression of Gln3-dependent genes. Our results suggest that Sch9 functions analogously to the mammalian TORC1 substrate S6K1 rather than the mTORC2 substrate PKB/Akt.
Asunto(s)
Proteínas Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Sitios de Unión , Genes Fúngicos , Complejos Multiproteicos , Mutagénesis Sitio-Dirigida , Presión Osmótica , Estrés Oxidativo , Fosforilación , Biosíntesis de Proteínas , Proteínas Quinasas/química , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Regulón , Fase de Descanso del Ciclo Celular , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Sirolimus/farmacología , Temperatura , Vacuolas/metabolismoRESUMEN
The yeast myosins I Myo3p and Myo5p have well established functions in the polarization of the actin cytoskeleton and in the endocytic uptake of the G protein-coupled receptor Ste2p. A number of results suggest that phosphorylation of the conserved TEDS serine of the myosin I motor head by the Cdc42p activated p21-activated kinases Ste20p and Cla4p is required for the organization of the actin cytoskeleton. However, the role of this signaling cascade in the endocytic uptake has not been investigated. Interestingly, we find that Myo5p TEDS site phosphorylation is not required for slow, constitutive endocytosis of Ste2p, but it is essential for rapid, ligand-induced internalization of the receptor. Our results strongly suggest that a kinase activates the myosins I to sustain fast endocytic uptake. Surprisingly, however, despite the fact that only p21-activated kinases are known to phosphorylate the conserved TEDS site, we find that these kinases are not essential for ligand-induced internalization of Ste2p. Our observations indicate that a different signaling cascade, involving the yeast homologues of the mammalian PDK1 (3-phosphoinositide-dependent-protein kinase-1), Phk1p and Pkh2p, and serum and glucocorticoid-induced kinase, Ypk1p and Ypk2p, activate Myo3p and Myo5p for their endocytic function.