Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Am J Hum Genet ; 111(7): 1330-1351, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38815585

RESUMEN

Epigenetic dysregulation has emerged as an important etiological mechanism of neurodevelopmental disorders (NDDs). Pathogenic variation in epigenetic regulators can impair deposition of histone post-translational modifications leading to aberrant spatiotemporal gene expression during neurodevelopment. The male-specific lethal (MSL) complex is a prominent multi-subunit epigenetic regulator of gene expression and is responsible for histone 4 lysine 16 acetylation (H4K16ac). Using exome sequencing, here we identify a cohort of 25 individuals with heterozygous de novo variants in MSL complex member MSL2. MSL2 variants were associated with NDD phenotypes including global developmental delay, intellectual disability, hypotonia, and motor issues such as coordination problems, feeding difficulties, and gait disturbance. Dysmorphisms and behavioral and/or psychiatric conditions, including autism spectrum disorder, and to a lesser extent, seizures, connective tissue disease signs, sleep disturbance, vision problems, and other organ anomalies, were observed in affected individuals. As a molecular biomarker, a sensitive and specific DNA methylation episignature has been established. Induced pluripotent stem cells (iPSCs) derived from three members of our cohort exhibited reduced MSL2 levels. Remarkably, while NDD-associated variants in two other members of the MSL complex (MOF and MSL3) result in reduced H4K16ac, global H4K16ac levels are unchanged in iPSCs with MSL2 variants. Regardless, MSL2 variants altered the expression of MSL2 targets in iPSCs and upon their differentiation to early germ layers. Our study defines an MSL2-related disorder as an NDD with distinguishable clinical features, a specific blood DNA episignature, and a distinct, MSL2-specific molecular etiology compared to other MSL complex-related disorders.


Asunto(s)
Epilepsia , Trastornos del Neurodesarrollo , Humanos , Masculino , Trastornos del Neurodesarrollo/genética , Femenino , Epilepsia/genética , Niño , Preescolar , Metilación de ADN/genética , Histonas/metabolismo , Histonas/genética , Fenotipo , Discapacidad Intelectual/genética , Epigénesis Genética , Adolescente , Células Madre Pluripotentes Inducidas/metabolismo , Discapacidades del Desarrollo/genética
2.
Eur J Hum Genet ; 31(11): 1209-1217, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37697079

RESUMEN

Embryonic development requires tight control of gene expression levels, activity, and localisation. This control is coordinated by multiple levels of regulation on DNA, RNA and protein. RNA-binding proteins (RBPs) are recognised as key regulators of post-transcriptional gene regulation, where their binding controls splicing, polyadenylation, nuclear export, mRNA stability, translation rate and decay. In brain development, the ELAVL family of RNA binding proteins undertake essential functions across spatiotemporal windows to help regulate and specify transcriptomic programmes for cell specialisation. Despite their recognised importance in neural tissues, their molecular roles and connections to pathology are less explored. Here we provide an overview of the neuronal ELAVL family, noting commonalities and differences amongst different species, their molecular characteristics, and roles in the cell. We bring together the available molecular genetics evidence to link different ELAVL proteins to phenotypes and disease, in both the brain and beyond, including ELAVL2, which is the least studied ELAVL family member. We find that ELAVL-related pathology shares a common neurological theme, but different ELAVL proteins are more strongly connected to different phenotypes, reflecting their specialised expression across time and space.


Asunto(s)
Proteínas de Unión al ARN , ARN , Humanos , ARN/metabolismo , Proteínas de Unión al ARN/genética , Empalme del ARN , Encéfalo/metabolismo , Biología Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA