Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 134(40): 16759-64, 2012 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-22928587

RESUMEN

While graphene has attracted significant attention from the research community due to its high charge carrier mobility, important issues remain unresolved that prevent its widespread use in technologically significant applications such as digital electronics. For example, the chemical inertness of graphene hinders integration with other materials, and the lack of a bandgap implies poor switching characteristics in transistors. The formation of ordered organic monolayers on graphene has the potential to address each of these challenges. In particular, functional groups incorporated into the constituent molecules enable tailored chemical reactivity, while molecular-scale ordering within the monolayer provides sub-2 nm templates with the potential to tune the electronic band structure of graphene via quantum confinement effects. Toward these ends, we report here the formation of well-defined one-dimensional organic nanostructures on epitaxial graphene via the self-assembly of 10,12-pentacosadiynoic acid (PCDA) in ultrahigh vacuum (UHV). Molecular resolution UHV scanning tunneling microscopy (STM) images confirm the one-dimensional ordering of the as-deposited PCDA monolayer and show domain boundaries with symmetry consistent with the underlying graphene lattice. In an effort to further stabilize the monolayer, in situ ultraviolet photopolymerization induces covalent bonding between neighboring PCDA molecules in a manner that maintains one-dimensional ordering as verified by UHV STM and ambient atomic force microscopy (AFM). Further quantitative insights into these experimental observations are provided by semiempirical quantum chemistry calculations that compare the molecular structure before and after photopolymerization.


Asunto(s)
Ácidos Grasos Insaturados/química , Grafito/química , Nanoestructuras/química , Polimerizacion , Modelos Moleculares , Nanoestructuras/ultraestructura , Procesos Fotoquímicos , Propiedades de Superficie
2.
J Phys Chem B ; 113(25): 8657-69, 2009 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-19485320

RESUMEN

An ab initio study of the addition of successive water molecules to the amino acid l-alanine in both the nonionized (N) and zwitterionic (Z) forms are presented. The main focus is the number of waters needed to stabilize the Z form and how the solvent affects conformational preference. The solvent is modeled by ab initio electronic structure theory, the EFP (effective fragment potential) model, and the isotropic dielectric PCM (polarizable continuum method) bulk solvation techniques. The EFP discrete solvation model is used with a Monte Carlo algorithm to sample the configuration space to find the global minimum. Bridging structures are predicted to be the lowest energy Z minima after 3-5 discrete waters are included in the calculations, depending on the level of theory. Second-order perturbation theory and PCM stabilize the Z structures by approximately 3-6 and 7 kcal/mol, respectively, relative to the N global minimum through the addition of up to 8 waters. Subsequently, the contributions of each are approximately 1 kcal/mol relative to the N global minimum. The presence of 32 waters appears to be close to converging the N-Z enthalpy difference, DeltaH(N-Z).


Asunto(s)
Alanina/química , Agua/química , Modelos Moleculares , Conformación Molecular , Método de Montecarlo , Soluciones , Estereoisomerismo
3.
J Phys Chem B ; 113(29): 9646-63, 2009 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-19368406

RESUMEN

Three exciting new methods that address the accurate prediction of processes and properties of large molecular systems are discussed. The systematic fragmentation method (SFM) and the fragment molecular orbital (FMO) method both decompose a large molecular system (e.g., protein, liquid, zeolite) into small subunits (fragments) in very different ways that are designed to both retain the high accuracy of the chosen quantum mechanical level of theory while greatly reducing the demands on computational time and resources. Each of these methods is inherently scalable and is therefore eminently capable of taking advantage of massively parallel computer hardware while retaining the accuracy of the corresponding electronic structure method from which it is derived. The effective fragment potential (EFP) method is a sophisticated approach for the prediction of nonbonded and intermolecular interactions. Therefore, the EFP method provides a way to further reduce the computational effort while retaining accuracy by treating the far-field interactions in place of the full electronic structure method. The performance of the methods is demonstrated using applications to several systems, including benzene dimer, small organic species, pieces of the alpha helix, water, and ionic liquids.

4.
J Phys Chem A ; 113(37): 10040-9, 2009 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-19739681

RESUMEN

The systematic fragmentation method fragments a large molecular system into smaller pieces, in such a way as to greatly reduce the computational cost while retaining nearly the accuracy of the parent ab initio electronic structure method. In order to attain the desired (sub-kcal/mol) accuracy, one must properly account for the nonbonded interactions between the separated fragments. Since, for a large molecular species, there can be a great many fragments and therefore a great many nonbonded interactions, computations of the nonbonded interactions can be very time-consuming. The present work explores the efficacy of employing the effective fragment potential (EFP) method to obtain the nonbonded interactions since the EFP method has been shown previously to capture nonbonded interactions with an accuracy that is often comparable to that of second-order perturbation theory. It is demonstrated that for nonbonded interactions that are not high on the repulsive wall (generally >2.7 A), the EFP method appears to be a viable approach for evaluating the nonbonded interactions. The efficacy of the EFP method for this purpose is illustrated by comparing the method to ab initio methods for small water clusters, the ZOVGAS molecule, retinal, and the alpha-helix. Using SFM with EFP for nonbonded interactions yields an error of 0.2 kcal/mol for the retinal cis-trans isomerization and a mean error of 1.0 kcal/mol for the isomerization energies of five small (120-170 atoms) alpha-helices.

5.
J Phys Chem B ; 113(43): 14413-20, 2009 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-19788284

RESUMEN

The solvation of alanine is investigated, with a focus on adding a sufficient number of discrete water molecules to determine the first solvation shell for both the nonionized (N) and zwitterionic (Z) forms to converge the enthalpy of solvation and the enthalpy difference for the two forms of alanine. Monte Carlo sampling was employed using the generalized effective fragment potential (EFP) method to determine the global minimum of both conformers, with the number of EFP water molecules ranging from 32-49. A subset of sampled geometries were optimized with second-order perturbation theory (MP2) using the 6-31++G(d,p) basis set. Single point energies were calculated at these geometries using the polarizable continuum model (PCM). The predicted 298.15 K enthalpy of solvation ranges for MP2/6-31++G(d,p) and MP2+PCM//MP2/6-31++G(d,p) are 10.0-13.2 kcal/mol and 10.1-12.6 kcal/mol, respectively.


Asunto(s)
Alanina/química , Agua/química , Método de Montecarlo , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA