Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(9)2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37175487

RESUMEN

The identification of biomarkers plays a crucial role in personalized medicine, both in the clinical and research settings. However, the contrast between predictive and prognostic biomarkers can be challenging due to the overlap between the two. A prognostic biomarker predicts the future outcome of cancer, regardless of treatment, and a predictive biomarker predicts the effectiveness of a therapeutic intervention. Misclassifying a prognostic biomarker as predictive (or vice versa) can have serious financial and personal consequences for patients. To address this issue, various statistical and machine learning approaches have been developed. The aim of this study is to present an in-depth analysis of recent advancements, trends, challenges, and future prospects in biomarker identification. A systematic search was conducted using PubMed to identify relevant studies published between 2017 and 2023. The selected studies were analyzed to better understand the concept of biomarker identification, evaluate machine learning methods, assess the level of research activity, and highlight the application of these methods in cancer research and treatment. Furthermore, existing obstacles and concerns are discussed to identify prospective research areas. We believe that this review will serve as a valuable resource for researchers, providing insights into the methods and approaches used in biomarker discovery and identifying future research opportunities.


Asunto(s)
Biomarcadores de Tumor , Neoplasias , Humanos , Pronóstico , Estudios Prospectivos , Biomarcadores/análisis , Medicina de Precisión , Aprendizaje Automático , Neoplasias/diagnóstico
2.
Cancers (Basel) ; 15(19)2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37835518

RESUMEN

Histopathologic whole-slide images (WSI) are generally considered the gold standard for cancer diagnosis and prognosis. Survival prediction based on WSI has recently attracted substantial attention. Nevertheless, it remains a central challenge owing to the inherent difficulties of predicting patient prognosis and effectively extracting informative survival-specific representations from WSI with highly compounded gigapixels. In this study, we present a fully automated cellular-level dual global fusion pipeline for survival prediction. Specifically, the proposed method first describes the composition of different cell populations on WSI. Then, it generates dimension-reduced WSI-embedded maps, allowing for efficient investigation of the tumor microenvironment. In addition, we introduce a novel dual global fusion network to incorporate global and inter-patch features of cell distribution, which enables the sufficient fusion of different types and locations of cells. We further validate the proposed pipeline using The Cancer Genome Atlas lung adenocarcinoma dataset. Our model achieves a C-index of 0.675 (±0.05) in the five-fold cross-validation setting and surpasses comparable methods. Further, we extensively analyze embedded map features and survival probabilities. These experimental results manifest the potential of our proposed pipeline for applications using WSI in lung adenocarcinoma and other malignancies.

3.
Sci Rep ; 12(1): 128, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34996975

RESUMEN

In biological systems, Glutamic acid is a crucial amino acid which is used in protein biosynthesis. Carboxylation of glutamic acid is a significant post-translational modification which plays important role in blood coagulation by activating prothrombin to thrombin. Contrariwise, 4-carboxy-glutamate is also found to be involved in diseases including plaque atherosclerosis, osteoporosis, mineralized heart valves, bone resorption and serves as biomarker for onset of these diseases. Owing to the pathophysiological significance of 4-carboxyglutamate, its identification is important to better understand pathophysiological systems. The wet lab identification of prospective 4-carboxyglutamate sites is costly, laborious and time consuming due to inherent difficulties of in-vivo, ex-vivo and in vitro experiments. To supplement these experiments, we proposed, implemented, and evaluated a different approach to develop 4-carboxyglutamate site predictors using pseudo amino acid compositions (PseAAC) and deep neural networks (DNNs). Our approach does not require any feature extraction and employs deep neural networks to learn feature representation of peptide sequences and performing classification thereof. Proposed approach is validated using standard performance evaluation metrics. Among different deep neural networks, convolutional neural network-based predictor achieved best scores on independent dataset with accuracy of 94.7%, AuC score of 0.91 and F1-score of 0.874 which shows the promise of proposed approach. The iCarboxE-Deep server is deployed at https://share.streamlit.io/sheraz-n/carboxyglutamate/app.py .


Asunto(s)
Biología Computacional , Aprendizaje Profundo , Ácido Glutámico , Procesamiento Proteico-Postraduccional , Proteínas , Secuencia de Aminoácidos , Ácido Glutámico/análogos & derivados , Ácido Glutámico/metabolismo , Modelos Moleculares , Conformación Proteica , Proteínas/química , Proteínas/metabolismo , Reproducibilidad de los Resultados , Relación Estructura-Actividad
4.
J King Saud Univ Comput Inf Sci ; 34(9): 7419-7432, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38620874

RESUMEN

Messenger RNA (mRNA) has emerged as a critical global technology that requires global joint efforts from different entities to develop a COVID-19 vaccine. However, the chemical properties of RNA pose a challenge in utilizing mRNA as a vaccine candidate. For instance, the molecules are prone to degradation, which has a negative impact on the distribution of mRNA among patients. In addition, little is known of the degradation properties of individual RNA bases in a molecule. Therefore, this study aims to investigate whether a hybrid deep learning can predict RNA degradation from RNA sequences. Two deep hybrid neural network models were proposed, namely GCN_GRU and GCN_CNN. The first model is based on graph convolutional neural networks (GCNs) and gated recurrent unit (GRU). The second model is based on GCN and convolutional neural networks (CNNs). Both models were computed over the structural graph of the mRNA molecule. The experimental results showed that GCN_GRU hybrid model outperform GCN_CNN model by a large margin during the test time. Validation of proposed hybrid models is performed by well-known evaluation measures. Among different deep neural networks, GCN_GRU based model achieved best scores on both public and private MCRMSE test scores with 0.22614 and 0.34152, respectively. Finally, GCN_GRU pre-trained model has achieved the highest AuC score of 0.938. Such proven outperformance of GCNs indicates that modeling RNA molecules using graphs is critical in understanding molecule degradation mechanisms, which helps in minimizing the aforementioned issues. To show the importance of the proposed GCN_GRU hybrid model, in silico experiments has been contacted. The in-silico results showed that our model pays local attention when predicting a given position's reactivity and exhibits interesting behavior on neighboring bases in the sequence.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA