Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Nat Rev Mol Cell Biol ; 23(10): 680-694, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35513717

RESUMEN

Plant hormones are signalling compounds that regulate crucial aspects of growth, development and environmental stress responses. Abiotic stresses, such as drought, salinity, heat, cold and flooding, have profound effects on plant growth and survival. Adaptation and tolerance to such stresses require sophisticated sensing, signalling and stress response mechanisms. In this Review, we discuss recent advances in understanding how diverse plant hormones control abiotic stress responses in plants and highlight points of hormonal crosstalk during abiotic stress signalling. Control mechanisms and stress responses mediated by plant hormones including abscisic acid, auxin, brassinosteroids, cytokinins, ethylene and gibberellins are discussed. We discuss new insights into osmotic stress sensing and signalling mechanisms, hormonal control of gene regulation and plant development during stress, hormone-regulated submergence tolerance and stomatal movements. We further explore how innovative imaging approaches are providing insights into single-cell and tissue hormone dynamics. Understanding stress tolerance mechanisms opens new opportunities for agricultural applications.


Asunto(s)
Ácido Abscísico , Reguladores del Crecimiento de las Plantas , Brasinoesteroides , Citocininas , Etilenos , Regulación de la Expresión Génica de las Plantas , Giberelinas , Hormonas , Ácidos Indolacéticos , Plantas/genética , Estrés Fisiológico/fisiología
3.
Nature ; 605(7909): 332-339, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35508659

RESUMEN

Stomata exert considerable effects on global carbon and water cycles by mediating gas exchange and water vapour1,2. Stomatal closure prevents water loss in response to dehydration and limits pathogen entry3,4. However, prolonged stomatal closure reduces photosynthesis and transpiration and creates aqueous apoplasts that promote colonization by pathogens. How plants dynamically regulate stomatal reopening in a changing climate is unclear. Here we show that the secreted peptides SMALL PHYTOCYTOKINES REGULATING DEFENSE AND WATER LOSS (SCREWs) and the cognate receptor kinase PLANT SCREW UNRESPONSIVE RECEPTOR (NUT) counter-regulate phytohormone abscisic acid (ABA)- and microbe-associated molecular pattern (MAMP)-induced stomatal closure. SCREWs sensed by NUT function as immunomodulatory phytocytokines and recruit SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) co-receptors to relay immune signalling. SCREWs trigger the NUT-dependent phosphorylation of ABA INSENSITIVE 1 (ABI1) and ABI2, which leads to an increase in the activity of ABI phosphatases towards OPEN STOMATA 1 (OST1)-a key kinase that mediates ABA- and MAMP-induced stomatal closure5,6-and a reduction in the activity of S-type anion channels. After induction by dehydration and pathogen infection, SCREW-NUT signalling promotes apoplastic water loss and disrupts microorganism-rich aqueous habitats to limit pathogen colonization. The SCREW-NUT system is widely distributed across land plants, which suggests that it has an important role in preventing uncontrolled stomatal closure caused by abiotic and biotic stresses to optimize plant fitness.


Asunto(s)
Ácido Abscísico , Reguladores del Crecimiento de las Plantas , Inmunidad de la Planta , Estomas de Plantas , Plantas , Agua , Proteínas de Arabidopsis , Deshidratación , Desecación
4.
Artículo en Inglés | MEDLINE | ID: mdl-38777629

RESUMEN

Chitosan (CHT) is a deacylated derivative of chitin and improves growth and yield performance, activates defensive genes, and also induces stomatal closure in plants. Glutathione (GSH) has significant functions in the growth, development, defense systems, signaling, and gene expression. Glutathione negatively regulates abscisic acid (ABA)-, methyl jasmonate (MeJA)-, and salicylic acid (SA)-induced stomatal closure. However, the negative regulation by GSH of CHT-induced stomatal closure is still unknown. Regulation of CHT-induced stomatal closure by GSH in guard cells was investigated using two GSH-deficient mutants, cad2-1 and ch1-1, and a GSH-decreasing chemical, 1-chloro-2,4-dinitrobenzene (CDNB). The cad2-1 and ch1-1 mutations and CDNB treatment enhanced CHT-induced stomatal closure. Treatment with glutathione monoethyl ester (GSHmee) restored the GSH level in the guard cells of cad2-1 and ch1-1 and complemented the stomatal phenotype of the mutants. These results indicate that GSH negatively regulates CHT-induced stomatal closure in A. thaliana.

5.
Biosci Biotechnol Biochem ; 87(11): 1323-1331, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37553179

RESUMEN

Dihydroxyacetone (DHA) occurs in wide-ranging organisms, including plants, and can undergo spontaneous conversion to methylglyoxal (MG). While the toxicity of MG to plants is well-known, the toxicity of DHA to plants remains to be elucidated. We investigated the effects of DHA and MG on Arabidopsis. Exogenous DHA at up to 10 mm did not affect the radicle emergence, the expansion of green cotyledons, the seedling growth, or the activity of glyoxalase II, while DHA at 10 mm inhibited the root elongation and increased the activity of glyoxalase I. Exogenous MG at 1.0 mm inhibited these physiological responses and increased both activities. Dihydroxyacetone at 10 mm increased the MG content in the roots. These results indicate that DHA is not so toxic as MG in Arabidopsis seeds and seedlings and suggest that the toxic effect of DHA at high concentrations is attributed to MG accumulation by the conversion to MG.


Asunto(s)
Arabidopsis , Lactoilglutatión Liasa , Dihidroxiacetona/farmacología , Piruvaldehído/farmacología , Antocianinas/farmacología
6.
Proc Natl Acad Sci U S A ; 117(34): 20932-20942, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32778594

RESUMEN

Many pathogenic fungi exploit stomata as invasion routes, causing destructive diseases of major cereal crops. Intensive interaction is expected to occur between guard cells and fungi. In the present study, we took advantage of well-conserved molecules derived from the fungal cell wall, chitin oligosaccharide (CTOS), and chitosan oligosaccharide (CSOS) to study how guard cells respond to fungal invasion. In Arabidopsis, CTOS induced stomatal closure through a signaling mediated by its receptor CERK1, Ca2+, and a major S-type anion channel, SLAC1. CSOS, which is converted from CTOS by chitin deacetylases from invading fungi, did not induce stomatal closure, suggesting that this conversion is a fungal strategy to evade stomatal closure. At higher concentrations, CSOS but not CTOS induced guard cell death in a manner dependent on Ca2+ but not CERK1. These results suggest that stomatal immunity against fungal invasion comprises not only CTOS-induced stomatal closure but also CSOS-induced guard cell death.


Asunto(s)
Quitina/metabolismo , Estomas de Plantas/inmunología , Estomas de Plantas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Calcio/metabolismo , Muerte Celular/efectos de los fármacos , Quitina/fisiología , Quitosano/metabolismo , Hongos/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Transducción de Señal/efectos de los fármacos
7.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36614263

RESUMEN

Since brown rice extract is a rich source of biologically active compounds, the present study is aimed to quantify the major compounds in brown rice and to compare their cytoprotective potential against oxidative stress. The content of the main hydrophobic compounds in brown rice followed the order of cycloartenyl ferulate (CAF) (89.00 ± 8.07 nmol/g) >> α-tocopherol (αT) (19.73 ± 2.28 nmol/g) > γ-tocotrienol (γT3) (18.24 ± 1.41 nmol/g) > α-tocotrienol (αT3) (16.02 ± 1.29 nmol/g) > γ-tocopherol (γT) (3.81 ± 0.40 nmol/g). However, the percent contribution of CAF to the radical scavenging activity of one gram of whole brown rice was similar to those of αT, αT3, and γT3 because of its weaker antioxidant activity. The CAF pretreatment displayed a significant cytoprotective effect on the hydrogen peroxide-induced cytotoxicity from 10 µM, which is lower than the minimal concentrations of αT and γT required for a significant protection. CAF also enhanced the nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation coincided with the enhancement of the heme oxygenase-1 (HO-1) mRNA level. An HO-1 inhibitor, tin protoporphyrin IX (SnPP), significantly impaired the cytoprotection of CAF. The cytoprotective potential of CAF is attributable to its cycloartenyl moiety besides the ferulyl moiety. These results suggested that CAF is the predominant cytoprotector in brown rice against hydrogen peroxide-induced cytotoxicity.


Asunto(s)
Oryza , Oryza/metabolismo , Peróxido de Hidrógeno/farmacología , Estrés Oxidativo , Antioxidantes/farmacología , Antioxidantes/metabolismo , alfa-Tocoferol/farmacología , Hemo-Oxigenasa 1/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo
8.
New Phytol ; 236(3): 852-863, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35879859

RESUMEN

Plants secrete malate from guard cells to apoplast under stress conditions and exogenous malate induces stomatal closure. Malate is considered an extracellular chemical signal of stomatal closure. However, the molecular mechanism of malate-induced stomatal closure is not fully elucidated. We investigated responses of stomatal aperture, ion channels, and cytosolic Ca2+ to malate. A treatment with malate induced stomatal closure in Arabidopsis thaliana wild-type plants, but not in the mutants deficient in the slow (S-type) anion channel gene SLOW ANION CHANNEL-ASSOCIATED 1 (SLAC1). The treatment with malate increased S-type anion currents in guard-cell protoplasts of wild-type plants but not in the slac1 mutant. In addition, extracellular rather than intracellular application of malate increased the S-type currents of constitutively active mutants of SLAC1, which have kinase-independent activities, in a heterologous expression system using Xenopus oocytes. The treatment with malate transiently increased cytosolic Ca2+ concentration in the wild-type Arabidopsis guard cells and the malate-induced stomatal closure was inhibited by the Ca2+ channel blocker and the Ca2+ chelator. These results indicate that extracellular malate directly activates SLAC1 and simultaneously stimulates Ca2+ signalling in guard cells, resulting in steady and solid activation of SLAC1 for stomatal closure.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Aniones/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Quelantes/metabolismo , Canales Iónicos/metabolismo , Malatos/metabolismo , Proteínas de la Membrana/metabolismo , Estomas de Plantas/fisiología
9.
J Biochem Mol Toxicol ; 36(11): e23184, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35920443

RESUMEN

Benzyl isothiocyanate (BITC), derived from cruciferous vegetables, is an organosulfur compound exerting antiproliferative effects in several human cancer cells. In this study, we assessed BITC as a potential osteoclastogenesis inhibitor and investigated its underlying mechanism. BITC at 5 µM significantly decreased the viability of the osteoclast-like differentiating RAW264.7 cells, coinciding with the downregulation of the primary biomarkers for osteoclast differentiation, such as the tartrate-resistant acid phosphatase activity and nuclear factor of activated T-cells gene expression. Not only BITC but also its metabolites, inhibited cell proliferation in the normal RAW264.7 cells, suggesting that BITC shows an anti-osteoclastogenesis effect in vivo after its ingestion and metabolism, possibly through an antiproliferative action. Both BITC and its metabolites also enhanced the DNA fragmentation and the caspase-3 activity, whereas their higher concentrations tended to suppress these effects. BITC was intracellularly accumulated when the cells were treated with its metabolites via their degradation into the free form. A quantitative experiment using the proteolysis/high performance liquid chromatography technique showed that the amount of BITC-lysine thiourea in the cells was also increased in a time-dependent manner, suggesting that lysine modification of the cellular proteins actually took place in the cells treated by BITC. Among the cellular proteins, the cleaved caspase-3 was identified as a potential target for lysine modification by BITC. Taken together, BITC dissociated from its metabolites as well as its free form might modulate osteoclastogenesis, possibly through inhibition of cell proliferation by protein modification.


Asunto(s)
Isotiocianatos , Lisina , Humanos , Ratones , Animales , Caspasa 3/metabolismo , Isotiocianatos/farmacología , Proliferación Celular , Apoptosis , Línea Celular Tumoral
10.
Biosci Biotechnol Biochem ; 86(10): 1378-1382, 2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-35867881

RESUMEN

Salicylic acid (SA) is a ubiquitous phenolic phytohormone that induces stomatal closure. Glutathione (GSH) negatively regulates stomatal closure induced by other plant hormones such as abscisic acid (ABA) and methyl jasmonate (MeJA). However, the involvement of GSH in SA-induced stomatal closure is still unknown. We investigated the regulation of SA signaling by GSH in guard cells using an Arabidopsis thaliana mutant, cad2-1, which is deficient in the first GSH biosynthesis enzyme, γ-glutamylcysteine synthetase. Application of SA decreased stomatal apertures with decreasing intracellular GSH level in guard cells. Decreasing GSH by the cad2-1 mutation and by a GSH-decreasing chemical, 1-chloro-2,4-dinitrobenzene, enhanced the SA-induced stomatal closure. Treatment with glutathione monoethyl ester restored the GSH level in the cad2-1 guard cells and complemented the stomatal phenotype of the mutant. These results indicate that GSH negatively modulates SA-induced stomatal closure in A. thaliana.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/farmacología , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Dinitroclorobenceno , Glutamato-Cisteína Ligasa/genética , Glutatión/farmacología , Mutación , Reguladores del Crecimiento de las Plantas/farmacología , Estomas de Plantas/genética , Especies Reactivas de Oxígeno , Ácido Salicílico/farmacología
11.
Biosci Biotechnol Biochem ; 86(10): 1362-1367, 2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-35867880

RESUMEN

A primary metabolite malate is secreted from guard cells in response to the phytohormone abscisic acid (ABA) and elevated CO2. The secreted malate subsequently facilitates stomatal closure in plants. Here, we investigated the molecular mechanism of malate-induced stomatal closure using inhibitors and ABA signaling component mutants of Arabidopsis thaliana. Malate-induced stomatal closure was impaired by a protein kinase inhibitor, K252a, and also by the disruption of a receptor-like kinase GHR1, which mediates activation of calcium ion (Ca2+) channel by reactive oxygen species (ROS) in guard cells. Malate induced ROS production in guard cells while the malate-induced stomatal closure was impaired by a peroxidase inhibitor, salicylhydroxamic acid, but not by the disruption of Nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) oxidases, RBOHD and RBOHF. The malate-induced stomatal closure was impaired by Ca2+ channel blockers, verapamil, and niflumic acid. These results demonstrate that the malate signaling is mediated by GHR1 and ROS in Arabidopsis guard cells.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Calcio/metabolismo , Dióxido de Carbono/metabolismo , Malatos/metabolismo , Malatos/farmacología , NAD/metabolismo , Ácido Niflúmico/metabolismo , Oxidorreductasas/metabolismo , Peroxidasas/metabolismo , Fosfatos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Estomas de Plantas/metabolismo , Inhibidores de Proteínas Quinasas , Proteínas Quinasas , Especies Reactivas de Oxígeno/metabolismo , Verapamilo
12.
Int J Mol Sci ; 23(3)2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35163684

RESUMEN

Aldehyde dehydrogenases (ALDHs) are the major enzyme superfamily for the aldehyde metabolism. Since the ALDH polymorphism leads to the accumulation of acetaldehyde, we considered that the enhancement of the liver ALDH activity by certain food ingredients could help prevent alcohol-induced chronic diseases. Here, we evaluated the modulating effects of 3-hydroxyphenylacetic acid (OPAC), the major metabolite of quercetin glycosides, on the ALDH activity and acetaldehyde-induced cytotoxicity in the cultured cell models. OPAC significantly enhanced the total ALDH activity not only in mouse hepatoma Hepa1c1c7 cells, but also in human hepatoma HepG2 cells. OPAC significantly increased not only the nuclear level of aryl hydrocarbon receptor (AhR), but also the AhR-dependent reporter gene expression, though not the nuclear factor erythroid-2-related factor 2 (Nrf2)-dependent one. The pretreatment of OPAC at the concentration required for the ALDH upregulation completely inhibited the acetaldehyde-induced cytotoxicity. Silencing AhR impaired the resistant effect of OPAC against acetaldehyde. These results strongly suggested that OPAC protects the cells from the acetaldehyde-induced cytotoxicity, mainly through the AhR-dependent and Nrf2-independent enhancement of the total ALDH activity. Our findings suggest that OPAC has a protective potential in hepatocyte models and could offer a new preventive possibility of quercetin glycosides for targeting alcohol-induced chronic diseases.


Asunto(s)
Aldehído Deshidrogenasa/metabolismo , Glicósidos/metabolismo , Hepatocitos/patología , Intestinos/metabolismo , Fenilacetatos/farmacología , Sustancias Protectoras/farmacología , Quercetina/metabolismo , Acetaldehído , Aldehído Deshidrogenasa/genética , Carcinoma Hepatocelular/enzimología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Muerte Celular/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Citoprotección/efectos de los fármacos , Glicósidos/química , Células Hep G2 , Hepatocitos/efectos de los fármacos , Hepatocitos/enzimología , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Neoplasias Hepáticas/enzimología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Factor 2 Relacionado con NF-E2/metabolismo , Fenilacetatos/química , Quercetina/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo
13.
New Phytol ; 229(5): 2765-2779, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33187027

RESUMEN

Low concentrations of CO2 cause stomatal opening, whereas [CO2 ] elevation leads to stomatal closure. Classical studies have suggested a role for Ca2+ and protein phosphorylation in CO2 -induced stomatal closing. Calcium-dependent protein kinases (CPKs) and calcineurin-B-like proteins (CBLs) can sense and translate cytosolic elevation of the second messenger Ca2+ into specific phosphorylation events. However, Ca2+ -binding proteins that function in the stomatal CO2 response remain unknown. Time-resolved stomatal conductance measurements using intact plants, and guard cell patch-clamp experiments were performed. We isolated cpk quintuple mutants and analyzed stomatal movements in response to CO2 , light and abscisic acid (ABA). Interestingly, we found that cpk3/5/6/11/23 quintuple mutant plants, but not other analyzed cpk quadruple/quintuple mutants, were defective in high CO2 -induced stomatal closure and, unexpectedly, also in low CO2 -induced stomatal opening. Furthermore, K+ -uptake-channel activities were reduced in cpk3/5/6/11/23 quintuple mutants, in correlation with the stomatal opening phenotype. However, light-mediated stomatal opening remained unaffected, and ABA responses showed slowing in some experiments. By contrast, CO2 -regulated stomatal movement kinetics were not clearly affected in plasma membrane-targeted cbl1/4/5/8/9 quintuple mutant plants. Our findings describe combinatorial cpk mutants that function in CO2 control of stomatal movements and support the results of classical studies showing a role for Ca2+ in this response.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/farmacología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Dióxido de Carbono , Estomas de Plantas , Proteínas Quinasas/genética
14.
J Biochem Mol Toxicol ; 35(7): e22791, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33880814

RESUMEN

The increasing drug efflux through the ATP-binding cassette (ABC) transporters is the most plausible mechanism that mediates resistance to the anticancer phytochemicals, such as benzyl isothiocyanate (BITC), as well as chemotherapy drugs. To identify a potential component to overcome this resistance by combinatory utilization, we focused on multidrug resistance-associated proteins (MRPs) pumping various drug metabolites with glutathione as well as the organic anions. The pharmacological treatment of an MRP inhibitor, MK571, significantly potentiated the BITC-induced antiproliferation, coincided with the enhanced accumulation of BITC and glutathione in human colorectal cancer HCT-116 cells. MK571 also enhanced the apoptosis induction as well as activation of the mitogen-activated protein kinases and caspase-3, whereas it did not affect their basal levels. These results suggested that, since MRPs might play a pivotal role in the BITC efflux, MK571 potentiates the BITC-induced antiproliferation in human colorectal cancer cells through inhibition of the glutathione-dependent BITC efflux.


Asunto(s)
Apoptosis/efectos de los fármacos , Neoplasias Colorrectales , Isotiocianatos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/antagonistas & inhibidores , Propionatos/farmacología , Quinolinas/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Células HCT116 , Humanos , Isotiocianatos/farmacocinética , Isotiocianatos/farmacología , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo
15.
Biosci Biotechnol Biochem ; 85(9): 2003-2010, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34191003

RESUMEN

Cytosolic calcium ([Ca2+]cyt) elevation activates plasma membrane anion channels in guard cells, which is required for stomatal closure. However, involvement of the anion channels in the [Ca2+]cyt elevation remains unclear. We investigated the involvement using Arabidopsis thaliana anion channel mutants, slac1-4 slah3-3 and slac1-4 almt12-1. Extracellular calcium induced stomatal closure in the wild-type plants but not in the anion channel mutant plants whereas extracellular calcium induced [Ca2+]cyt elevation both in the wild-type guard cells and in the mutant guard cells. The peak height and the number of the [Ca2+]cyt spike were lower and larger in the slac1-4 slah3-3 than in the wild type and the height and the number in the slac1-4 almt12-1 were much lower and much larger than in the wild type. These results suggest that the anion channels are involved in the regulation of [Ca2+]cyt elevation in guard cells.


Asunto(s)
Calcio/metabolismo , Citosol/metabolismo , Canales Iónicos/metabolismo , Aniones , Arabidopsis/genética , Arabidopsis/metabolismo , Señalización del Calcio , Membrana Celular/metabolismo , Técnicas de Silenciamiento del Gen , Genes de Plantas , Mutación
16.
Biosci Biotechnol Biochem ; 85(10): 2161-2168, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34279597

RESUMEN

The purpose of this study is to compare the potentials to exhibit biologically active antioxidant actions between white rice (WR) and brown rice (BR) in in vitro assays and a cellular model. The Trolox equivalent (TE) per 1 mg ethanol extract of WR for the 1,1-diphenyl-2-picrylhydrazyl assay was slightly higher than that of BR, whereas the TE per 1 g whole WR was much lower than that for BR. This tendency was very comparable to those for the oxygen radical absorbance capacity and total polyphenol content. Both of the ethanol extracts also similarly suppressed the hydrogen peroxide-induced cytotoxicity and enhanced the gene expression of drug-metabolizing enzymes. Based on the α-tocopherol quantity, its contribution to the cytoprotective effect of the rice extracts is very limited. Taken together, the ethanol extract of WR might be a qualitatively, but not quantitatively, equivalent source of antioxidative phytochemicals to that of BR.


Asunto(s)
Antioxidantes , Oryza , Etanol , Fitoquímicos
17.
Biosci Biotechnol Biochem ; 86(1): 37-46, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34718409

RESUMEN

Arsenic is toxic for plants. Our previous results showed that the application of proline enhanced the sensitivity of tobacco BY-2 cells to arsenate. In order to clarify the enhancement mechanism, we investigated the effects of other amino acids on the arsenate-stressed BY-2 cells. Glutamate at up to 10 m m did not affect the cell growth in the absence or presence of arsenate. Arginine at up to 10 m m did not affect the growth in the absence of arsenate but arginine at 10 m m enhanced the inhibition of the cell growth by arsenate. Alanine at up to 10 m m did not affect the cell growth under nonstressed condition but alanine at 10 m m significantly improved the cell growth under arsenate stress. These results suggest that alanine mitigates arsenate stress in BY-2 cells and that arginine like proline enhances the sensitivity of BY-2 cells to arsenate.


Asunto(s)
Arseniatos
18.
Proc Natl Acad Sci U S A ; 115(42): E9971-E9980, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30282744

RESUMEN

Stomatal pore apertures are narrowing globally due to the continuing rise in atmospheric [CO2]. CO2 elevation and the plant hormone abscisic acid (ABA) both induce rapid stomatal closure. However, the underlying signal transduction mechanisms for CO2/ABA interaction remain unclear. Two models have been considered: (i) CO2 elevation enhances ABA concentrations and/or early ABA signaling in guard cells to induce stomatal closure and (ii) CO2 signaling merges with ABA at OST1/SnRK2.6 protein kinase activation. Here we use genetics, ABA-reporter imaging, stomatal conductance, patch clamp, and biochemical analyses to investigate these models. The strong ABA biosynthesis mutants nced3/nced5 and aba2-1 remain responsive to CO2 elevation. Rapid CO2-triggered stomatal closure in PYR/RCAR ABA receptor quadruple and hextuple mutants is not disrupted but delayed. Time-resolved ABA concentration monitoring in guard cells using a FRET-based ABA-reporter, ABAleon2.15, and ABA reporter gene assays suggest that CO2 elevation does not trigger [ABA] increases in guard cells, in contrast to control ABA exposures. Moreover, CO2 activates guard cell S-type anion channels in nced3/nced5 and ABA receptor hextuple mutants. Unexpectedly, in-gel protein kinase assays show that unlike ABA, elevated CO2 does not activate OST1/SnRK2 kinases in guard cells. The present study points to a model in which rapid CO2 signal transduction leading to stomatal closure occurs via an ABA-independent pathway downstream of OST1/SnRK2.6. Basal ABA signaling and OST1/SnRK2 activity are required to facilitate the stomatal response to elevated CO2 These findings provide insights into the interaction between CO2/ABA signal transduction in light of the continuing rise in atmospheric [CO2].


Asunto(s)
Ácido Abscísico/farmacología , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Dióxido de Carbono/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Estomas de Plantas/metabolismo , Proteínas Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Mutación , Reguladores del Crecimiento de las Plantas/farmacología , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/crecimiento & desarrollo , Proteínas Quinasas/genética , Especies Reactivas de Oxígeno/metabolismo
19.
Proc Natl Acad Sci U S A ; 115(36): 9038-9043, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30127035

RESUMEN

Stomatal guard cells develop unique chloroplasts in land plant species. However, the developmental mechanisms and function of chloroplasts in guard cells remain unclear. In seed plants, chloroplast membrane lipids are synthesized via two pathways: the prokaryotic and eukaryotic pathways. Here we report the central contribution of endoplasmic reticulum (ER)-derived chloroplast lipids, which are synthesized through the eukaryotic lipid metabolic pathway, in the development of functional guard cell chloroplasts. We gained insight into this pathway by isolating and examining an Arabidopsis mutant, gles1 (green less stomata 1), which had achlorophyllous stomatal guard cells and impaired stomatal responses to CO2 and light. The GLES1 gene encodes a small glycine-rich protein, which is a putative regulatory component of the trigalactosyldiacylglycerol (TGD) protein complex that mediates ER-to-chloroplast lipid transport via the eukaryotic pathway. Lipidomic analysis revealed that in the wild type, the prokaryotic pathway is dysfunctional, specifically in guard cells, whereas in gles1 guard cells, the eukaryotic pathway is also abrogated. CO2-induced stomatal closing and activation of guard cell S-type anion channels that drive stomatal closure were disrupted in gles1 guard cells. In conclusion, the eukaryotic lipid pathway plays an essential role in the development of a sensing/signaling machinery for CO2 and light in guard cell chloroplasts.


Asunto(s)
Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Cloroplastos/metabolismo , Luz , Metabolismo de los Lípidos/fisiología , Estomas de Plantas/metabolismo , Transducción de Señal/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico Activo/fisiología , Cloroplastos/genética , Mutación , Estomas de Plantas/genética
20.
Plant Cell Physiol ; 61(5): 967-977, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32145024

RESUMEN

Myrosinase (ß-thioglucoside glucohydrolase, enzyme nomenclature, EC 3.2.1.147, TGG) is a highly abundant protein in Arabidopsis guard cells, of which TGG1 and TGG2 function redundantly in abscisic acid (ABA)- and methyl jasmonate-induced stomatal closure. Reactive carbonyl species (RCS) are α,ß-unsaturated aldehydes and ketones, which function downstream of reactive oxygen species (ROS) production in the ABA signalling pathway in guard cells. Among the RCS, acrolein is the most highly reactive, which is significantly produced in ABA-treated guard cells. To clarify the ABA signal pathway downstream of ROS production, we investigated the responses of tgg mutants (tgg1-3, tgg2-1 and tgg1-3 tgg2-1) to acrolein. Acrolein induced stomatal closure and triggered cytosolic alkalization in wild type (WT), tgg1-3 single mutants and in tgg2-1 single mutants, but not in tgg1-3 tgg2-1 double mutants. Exogenous Ca2+ induced stomatal closure and cytosolic alkalization not only in WT but also in all of the mutants. Acrolein- and Ca2+-induced stomatal closures were inhibited by an intracellular acidifying agent, butyrate, a Ca2+ chelator, ethylene glycol tetraacetic acid (EGTA) and a Ca2+ channel blocker, LaCl3. Acrolein induced cytosolic free calcium concentration ([Ca2+]cyt) elevation in guard cells of WT plants but not in the tgg1-3 tgg2-1 double mutants. Exogenous Ca2+ elicited [Ca2+]cyt elevation in guard cells of WT and tgg1-3 tgg2-1. Our results suggest that TGG1 and TGG2 function redundantly, not between ROS production and RCS production, but downstream of RCS production in the ABA signal pathway in Arabidopsis guard cells.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Glicósido Hidrolasas/metabolismo , Estomas de Plantas/citología , Estomas de Plantas/metabolismo , Transducción de Señal , Acroleína/farmacología , Álcalis , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/genética , Ácido Butírico/farmacología , Calcio/farmacología , Citosol/efectos de los fármacos , Citosol/metabolismo , Ácido Egtácico/farmacología , Glicósido Hidrolasas/genética , Lantano/farmacología , Modelos Biológicos , Estomas de Plantas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA