Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cell ; 186(19): 4117-4133.e22, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37591239

RESUMEN

Aging is the key risk factor for cognitive decline, yet the molecular changes underlying brain aging remain poorly understood. Here, we conducted spatiotemporal RNA sequencing of the mouse brain, profiling 1,076 samples from 15 regions across 7 ages and 2 rejuvenation interventions. Our analysis identified a brain-wide gene signature of aging in glial cells, which exhibited spatially defined changes in magnitude. By integrating spatial and single-nucleus transcriptomics, we found that glial aging was particularly accelerated in white matter compared with cortical regions, whereas specialized neuronal populations showed region-specific expression changes. Rejuvenation interventions, including young plasma injection and dietary restriction, exhibited distinct effects on gene expression in specific brain regions. Furthermore, we discovered differential gene expression patterns associated with three human neurodegenerative diseases, highlighting the importance of regional aging as a potential modulator of disease. Our findings identify molecular foci of brain aging, providing a foundation to target age-related cognitive decline.


Asunto(s)
Envejecimiento , Disfunción Cognitiva , Sustancia Blanca , Animales , Humanos , Ratones , Disfunción Cognitiva/genética , Perfilación de la Expresión Génica , Núcleo Solitario , Sustancia Blanca/patología , Análisis de Expresión Génica de una Sola Célula , Encéfalo/patología
2.
Nature ; 628(8006): 154-161, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38480892

RESUMEN

Several genetic risk factors for Alzheimer's disease implicate genes involved in lipid metabolism and many of these lipid genes are highly expressed in glial cells1. However, the relationship between lipid metabolism in glia and Alzheimer's disease pathology remains poorly understood. Through single-nucleus RNA sequencing of brain tissue in Alzheimer's disease, we have identified a microglial state defined by the expression of the lipid droplet-associated enzyme ACSL1 with ACSL1-positive microglia being most abundant in patients with Alzheimer's disease having the APOE4/4 genotype. In human induced pluripotent stem cell-derived microglia, fibrillar Aß induces ACSL1 expression, triglyceride synthesis and lipid droplet accumulation in an APOE-dependent manner. Additionally, conditioned media from lipid droplet-containing microglia lead to Tau phosphorylation and neurotoxicity in an APOE-dependent manner. Our findings suggest a link between genetic risk factors for Alzheimer's disease with microglial lipid droplet accumulation and neurotoxic microglia-derived factors, potentially providing therapeutic strategies for Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4 , Gotas Lipídicas , Microglía , Animales , Femenino , Humanos , Masculino , Ratones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Células Madre Pluripotentes Inducidas/citología , Gotas Lipídicas/metabolismo , Gotas Lipídicas/patología , Microglía/citología , Microglía/metabolismo , Microglía/patología , Triglicéridos , Proteínas tau , Medios de Cultivo Condicionados , Fosforilación , Predisposición Genética a la Enfermedad
3.
Glia ; 72(3): 625-642, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38031883

RESUMEN

Astrocytes are a heterogeneous population of central nervous system glial cells that respond to pathological insults and injury by undergoing a transformation called "reactivity." Reactive astrocytes exhibit distinct and context-dependent cellular, molecular, and functional state changes that can either support or disturb tissue homeostasis. We recently identified a reactive astrocyte sub-state defined by interferon-responsive genes like Igtp, Ifit3, Mx1, and others, called interferon-responsive reactive astrocytes (IRRAs). To further this transcriptomic definition of IRRAs, we wanted to define the proteomic changes that occur in this reactive sub-state. We induced IRRAs in immunopanned rodent astrocytes and human iPSC-differentiated astrocytes using TNF, IL1α, C1Q, and IFNß and characterized their proteomic profile (both cellular and secreted) using unbiased quantitative proteomics. We identified 2335 unique cellular proteins, including IFIT2/3, IFITM3, OASL1/2, MX1/2/3, and STAT1. We also report that rodent and human IRRAs secrete PAI1, a serine protease inhibitor which may influence reactive states and functions of nearby cells. Finally, we evaluated how IRRAs are distinct from neurotoxic reactive astrocytes (NRAs). While NRAs are described by expression of the complement protein C3, it was not upregulated in IRRAs. Instead, we found ~90 proteins unique to IRRAs not identified in NRAs, including OAS1A, IFIT3, and MX1. Interferon signaling in astrocytes is critical for the antiviral immune response and for regulating synaptic plasticity and glutamate transport mechanisms. How IRRAs contribute to these functions is unknown. This study provides the basis for future experiments to define the functional roles of IRRAs in the context of neurodegenerative disorders.


Asunto(s)
Astrocitos , Interferones , Animales , Humanos , Astrocitos/metabolismo , Interferones/metabolismo , Roedores/metabolismo , Proteómica , Sistema Nervioso Central/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Unión al ARN/metabolismo
4.
Nucleic Acids Res ; 49(2): e11, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33264392

RESUMEN

Massively-parallel single-cell and single-nucleus RNA sequencing (scRNA-seq, snRNA-seq) requires extensive sequencing to achieve proper per-cell coverage, making sequencing resources and availability of sequencers critical factors for conducting deep transcriptional profiling. CoolMPS is a novel sequencing-by-synthesis approach that relies on nucleotide labeling by re-usable antibodies, but whether it is applicable to snRNA-seq has not been tested. Here, we use a low-cost and off-the-shelf protocol to chemically convert libraries generated with the widely-used Chromium 10X technology to be sequenceable with CoolMPS technology. To assess the quality and performance of converted libraries sequenced with CoolMPS, we generated a snRNA-seq dataset from the hippocampus of young and old mice. Native libraries were sequenced on an Illumina Novaseq and libraries that were converted to be compatible with CoolMPS were sequenced on a DNBSEQ-400RS. CoolMPS-derived data faithfully replicated key characteristics of the native library dataset, including correct estimation of ambient RNA-contamination, detection of captured cells, cell clustering results, spatial marker gene expression, inter- and intra-replicate differences and gene expression changes during aging. In conclusion, our results show that CoolMPS provides a viable alternative to standard sequencing of RNA from droplet-based libraries.


Asunto(s)
Encapsulación Celular/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN Nuclear Pequeño/química , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Envejecimiento/genética , Animales , Conjuntos de Datos como Asunto , Técnica del Anticuerpo Fluorescente Directa , Biblioteca de Genes , Ontología de Genes , Hipocampo/química , Hipocampo/crecimiento & desarrollo , Masculino , Ratones , Ratones Endogámicos C57BL , Microfluídica/métodos , Nucleótidos/inmunología , Fosforilación , ARN Nuclear Pequeño/aislamiento & purificación , Organismos Libres de Patógenos Específicos
5.
J Exp Psychol Anim Learn Cogn ; 49(1): 14-30, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36795420

RESUMEN

The Pavlovian-instrumental transfer (PIT) paradigm is widely used to assay the motivational influence of reward-predictive cues, reflected by their ability to invigorate instrumental behavior. Leading theories assume that a cue's motivational properties are tied to predicted reward value. We outline an alternative view that recognizes that reward-predictive cues may suppress rather than motivate instrumental behavior under certain conditions, an effect termed positive conditioned suppression. We posit that cues signaling imminent reward delivery tend to inhibit instrumental behavior, which is exploratory by nature, in order to facilitate efficient retrieval of the expected reward. According to this view, the motivation to engage in instrumental behavior during a cue should be inversely related to the value of the predicted reward, since there is more to lose by failing to secure a high-value reward than a low-value reward. We tested this hypothesis in rats using a PIT protocol known to induce positive conditioned suppression. In Experiment 1, cues signaling different reward magnitudes elicited distinct response patterns. Whereas the one-pellet cue increased instrumental behavior, cues signaling three or nine pellets suppressed instrumental behavior and elicited high levels of food-port activity. Experiment 2 found that reward-predictive cues suppressed instrumental behavior and increased food-port activity in a flexible manner that was disrupted by post-training reward devaluation. Further analyses suggest that these findings were not driven by overt competition between the instrumental and food-port responses. We discuss how the PIT task may provide a useful tool for studying cognitive control over cue-motivated behavior in rodents. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Asunto(s)
Alimentos , Motivación , Ratas , Animales , Recompensa , Señales (Psicología) , Condicionamiento Clásico/fisiología , Condicionamiento Operante/fisiología
6.
bioRxiv ; 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37546938

RESUMEN

Several genetic risk factors for Alzheimer's Disease (AD) implicate genes involved in lipid metabolism and many of these lipid genes are highly expressed in glial cells. However, the relationship between lipid metabolism in glia and AD pathology remains poorly understood. Through single-nucleus RNA-sequencing of AD brain tissue, we have identified a microglial state defined by the expression of the lipid droplet (LD) associated enzyme ACSL1 with ACSL1-positive microglia most abundant in AD patients with the APOE4/4 genotype. In human iPSC-derived microglia (iMG) fibrillar Aß (fAß) induces ACSL1 expression, triglyceride synthesis, and LD accumulation in an APOE-dependent manner. Additionally, conditioned media from LD-containing microglia leads to Tau phosphorylation and neurotoxicity in an APOE-dependent manner. Our findings suggest a link between genetic risk factors for AD with microglial LD accumulation and neurotoxic microglial-derived factors, potentially providing novel therapeutic strategies for AD.

7.
Dev Cogn Neurosci ; 45: 100838, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32846387

RESUMEN

Impulsive behavior during adolescence may stem from developmental imbalances between motivational and cognitive-control systems, producing greater urges to pursue reward and weakened capacities to inhibit such actions. Here, we developed a Pavlovian-instrumental transfer (PIT) protocol to assay rats' ability to suppress cue-motivated reward seeking based on changes in reward expectancy. Traditionally, PIT studies focus on how reward-predictive cues motivate instrumental reward-seeking behavior (lever pressing). However, cues signaling imminent reward delivery also elicit countervailing focal-search responses (food-port entry). We first examined how reward expectancy (cue-reward probability) influences expression of these competing behaviors. Adult male rats increased rates of lever pressing when presented with cues signaling lower probabilities of reward but focused their activity at the food cup on trials with cues that signaled higher probabilities of reward. We then compared adolescent and adult male rats in their responsivity to cues signaling different reward probabilities. In contrast to adults, adolescent rats did not flexibly adjust patterns of responding based on the expected likelihood of reward delivery but increased their rate of lever pressing for both weak and strong cues. These findings indicate that control over cue-motivated behavior is fundamentally dysregulated during adolescence, providing a model for studying neurobiological mechanisms of adolescent impulsivity.


Asunto(s)
Recompensa , Animales , Condicionamiento Operante , Señales (Psicología) , Masculino , Motivación , Ratas , Ratas Long-Evans
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA