Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Genet Med ; 26(2): 100992, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37800450

RESUMEN

PURPOSE: The Hereditary Colorectal Cancer/Polyposis Variant Curation Expert Panel (VCEP) was established by the International Society for Gastrointestinal Hereditary Tumours and the Clinical Genome Resource, who set out to develop recommendations for the interpretation of germline APC variants underlying Familial Adenomatous Polyposis, the most frequent hereditary polyposis syndrome. METHODS: Through a rigorous process of database analysis, literature review, and expert elicitation, the APC VCEP derived gene-specific modifications to the ACMG/AMP (American College of Medical Genetics and Genomics and Association for Molecular Pathology) variant classification guidelines and validated such criteria through the pilot classification of 58 variants. RESULTS: The APC-specific criteria represented gene- and disease-informed specifications, including a quantitative approach to allele frequency thresholds, a stepwise decision tool for truncating variants, and semiquantitative evaluations of experimental and clinical data. Using the APC-specific criteria, 47% (27/58) of pilot variants were reclassified including 14 previous variants of uncertain significance (VUS). CONCLUSION: The APC-specific ACMG/AMP criteria preserved the classification of well-characterized variants on ClinVar while substantially reducing the number of VUS by 56% (14/25). Moving forward, the APC VCEP will continue to interpret prioritized lists of VUS, the results of which will represent the most authoritative variant classification for widespread clinical use.


Asunto(s)
Poliposis Adenomatosa del Colon , Pruebas Genéticas , Humanos , Pruebas Genéticas/métodos , Variación Genética , Poliposis Adenomatosa del Colon/diagnóstico , Poliposis Adenomatosa del Colon/genética , Mutación de Línea Germinal/genética , Células Germinativas
2.
J Med Genet ; 60(11): 1035-1043, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37076288

RESUMEN

While constitutional pathogenic variants in the APC gene cause familial adenomatous polyposis, APC c.3920T>A; p.Ile1307Lys (I1307K) has been associated with a moderate increased risk of colorectal cancer (CRC), particularly in individuals of Ashkenazi Jewish descent. However, published data include relatively small sample sizes, generating inconclusive results regarding cancer risk, particularly in non-Ashkenazi populations. This has led to different country/continental-specific guidelines regarding genetic testing, clinical management and surveillance recommendations for I1307K. A multidisciplinary international expert group endorsed by the International Society for Gastrointestinal Hereditary Tumours (InSiGHT), has generated a position statement on the APC I1307K allele and its association with cancer predisposition. Based on a systematic review and meta-analysis of the evidence published, the aim of this document is to summarise the prevalence of the APC I1307K allele and analysed the evidence of the associated cancer risk in different populations. Here we provide recommendations on the laboratory classification of the variant, define the role of predictive testing for I1307K, suggest recommendations for cancer screening in I1307K heterozygous and homozygous individuals and identify knowledge gaps to be addressed in future research studies. Briefly, I1307K, classified as pathogenic, low penetrance, is a risk factor for CRC in individuals of Ashkenazi Jewish origin and should be tested in this population, offering carriers specific clinical surveillance. There is not enough evidence to support an increased risk of cancer in other populations/subpopulations. Therefore, until/unless future evidence indicates otherwise, individuals of non-Ashkenazi Jewish descent harbouring I1307K should be enrolled in national CRC screening programmes for average-risk individuals.


Asunto(s)
Poliposis Adenomatosa del Colon , Neoplasias Colorrectales , Humanos , Predisposición Genética a la Enfermedad , Poliposis Adenomatosa del Colon/genética , Neoplasias Colorrectales/epidemiología , Neoplasias Colorrectales/genética , Genes APC , Factores de Riesgo , Judíos/genética
3.
Mol Genet Genomics ; 298(3): 555-566, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36856825

RESUMEN

The cancer syndrome polymerase proofreading-associated polyposis results from germline mutations in the POLE and POLD1 genes. Mutations in the exonuclease domain of these genes are associated with hyper- and ultra-mutated tumors with a predominance of base substitutions resulting from faulty proofreading during DNA replication. When a new variant is identified by gene testing of POLE and POLD1, it is important to verify whether the variant is associated with PPAP or not, to guide genetic counseling of mutation carriers. In 2015, we reported the likely pathogenic (class 4) germline POLE c.1373A > T p.(Tyr458Phe) variant and we have now characterized this variant to verify that it is a class 5 pathogenic variant. For this purpose, we investigated (1) mutator phenotype in tumors from two carriers, (2) mutation frequency in cell-based mutagenesis assays, and (3) structural consequences based on protein modeling. Whole-exome sequencing of two tumors identified an ultra-mutator phenotype with a predominance of base substitutions, the majority of which are C > T. A SupF mutagenesis assay revealed increased mutation frequency in cells overexpressing the variant of interest as well as in isogenic cells encoding the variant. Moreover, exonuclease repair yeast-based assay supported defect in proofreading activity. Lastly, we present a homology model of human POLE to demonstrate structural consequences leading to pathogenic impact of the p.(Tyr458Phe) mutation. The three lines of evidence, taken together with updated co-segregation and previously published data, allow the germline variant POLE c.1373A > T p.(Tyr458Phe) to be reclassified as a class 5 variant. That means the variant is associated with PPAP.


Asunto(s)
ADN Polimerasa II , Neoplasias , Humanos , ADN Polimerasa II/genética , ADN Polimerasa II/química , ADN Polimerasa II/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/genética , Neoplasias/genética , Mutación , Exonucleasas/genética , Exonucleasas/metabolismo
4.
Gut ; 70(6): 1139-1146, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32998877

RESUMEN

OBJECTIVE: Germline TP53 pathogenic (P) variants cause Li-Fraumeni syndrome (LFS), an aggressive multitumor-predisposing condition. Due to the implementation of multigene panel testing, TP53 variants have been detected in individuals without LFS suspicion, for example, patients with colorectal cancer (CRC). We aimed to decipher whether these findings are the result of detecting the background population prevalence or the aetiological basis of CRC. DESIGN: We analysed TP53 in 473 familial/early-onset CRC cases and evaluated the results together with five additional studies performed in patients with CRC (total n=6200). Control population and LFS data were obtained from Genome Aggregation Database (gnomAD V.2.1.1) and the International Agency for Research on Cancer (IARC) TP53 database, respectively. All variants were reclassified according to the guidelines of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP), following the ClinGen TP53 Expert Panel specifications. RESULTS: P or likely pathogenic (LP) variants were identified in 0.05% of controls (n=27/59 095) and 0.26% of patients with CRC (n=16/6200) (p<0.0001) (OR=5.7, 95% CI 2.8 to 10.9), none of whom fulfilled the clinical criteria established for TP53 testing. This association was still detected when patients with CRC diagnosed at more advanced ages (>50 and>60 years) were excluded from the analysis to minimise the inclusion of variants caused by clonal haematopoiesis. Loss-of-function and missense variants were strongly associated with CRC as compared with controls (OR=25.44, 95% CI 6.10 to 149.03, for loss of function and splice-site alleles, and OR=3.58, 95% CI 1.46 to 7.98, for missense P or LP variants). CONCLUSION: TP53 P variants should not be unequivocally associated with LFS. Prospective follow-up of carriers of germline TP53 P variants in the absence of LFS phenotypes will define how surveillance and clinical management of these individuals should be performed.


Asunto(s)
Neoplasias Colorrectales/genética , Predisposición Genética a la Enfermedad/genética , Proteína p53 Supresora de Tumor/genética , Adulto , Alelos , Estudios de Casos y Controles , Neoplasias Colorrectales/terapia , Genómica , Genotipo , Mutación de Línea Germinal , Humanos , Síndrome de Li-Fraumeni/genética , Mutación con Pérdida de Función , Persona de Mediana Edad , Mutación Missense , Fenotipo , Espera Vigilante
5.
Genet Med ; 22(12): 2089-2100, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32792570

RESUMEN

PURPOSE: Germline pathogenic variants in the exonuclease domain (ED) of polymerases POLE and POLD1 predispose to adenomatous polyps, colorectal cancer (CRC), endometrial tumors, and other malignancies, and exhibit increased mutation rate and highly specific associated mutational signatures. The tumor spectrum and prevalence of POLE and POLD1 variants in hereditary cancer are evaluated in this study. METHODS: POLE and POLD1 were sequenced in 2813 unrelated probands referred for genetic counseling (2309 hereditary cancer patients subjected to a multigene panel, and 504 patients selected based on phenotypic characteristics). Cosegregation and case-control studies, yeast-based functional assays, and tumor mutational analyses were performed for variant interpretation. RESULTS: Twelve ED missense variants, 6 loss-of-function, and 23 outside-ED predicted-deleterious missense variants, all with population allele frequencies <1%, were identified. One ED variant (POLE p.Met294Arg) was classified as likely pathogenic, four as likely benign, and seven as variants of unknown significance. The most commonly associated tumor types were colorectal, endometrial and ovarian cancers. Loss-of-function and outside-ED variants are likely not pathogenic for this syndrome. CONCLUSIONS: Polymerase proofreading-associated syndrome constitutes 0.1-0.4% of familial cancer cases, reaching 0.3-0.7% when only CRC and polyposis are considered. ED variant interpretation is challenging and should include multiple pieces of evidence.


Asunto(s)
Neoplasias Colorrectales , ADN Polimerasa II , ADN Polimerasa II/genética , ADN Polimerasa III , Mutación de Línea Germinal , Humanos , Mutación , Proteínas de Unión a Poli-ADP-Ribosa/genética
6.
Am J Med Genet A ; 182(11): 2742-2745, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32896090

RESUMEN

Cerebellofaciodental syndrome (MIM #616202) is an autosomal recessive condition characterized by intellectual disability, microcephaly, cerebellar hypoplasia, dysmorphic features, and short stature. To date, eight patients carrying biallelic BRF1 variants have been reported. Here, we describe two siblings with congenital microcephaly and corpus callosum hypoplasia, pre and postnatal growth retardation, congenital heart defect and severe global developmental delay. We also detected additional findings not previously reported in this syndrome, including bilateral sensorineural hearing impairment and inner ear malformation. Whole exome sequencing identified a novel homozygous missense variant (c.654G>C, p.[Trp218Cys]) in BRF1, predicted to affect the protein structure. Expression assessment showed extremely low BRF1 protein expression caused by the identified variant, supporting its causal involvement. The description of new patients with cerebellofaciodental syndrome is essential to better delineate the phenotypic and genotypic spectrum of the disease.


Asunto(s)
Anomalías Múltiples/patología , Cerebelo/anomalías , Anomalías Craneofaciales/patología , Enanismo/patología , Discapacidad Intelectual/patología , Atrofia Muscular/patología , Mutación , Malformaciones del Sistema Nervioso/patología , Fenotipo , Factores Asociados con la Proteína de Unión a TATA/genética , Anomalías Múltiples/genética , Cerebelo/patología , Niño , Anomalías Craneofaciales/genética , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/patología , Enanismo/genética , Humanos , Lactante , Discapacidad Intelectual/genética , Masculino , Atrofia Muscular/genética , Malformaciones del Sistema Nervioso/genética , Hermanos , Secuenciación del Exoma
7.
Gastroenterology ; 154(1): 181-194.e20, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28912018

RESUMEN

BACKGROUND & AIMS: Although there is a genetic predisposition to colorectal cancer (CRC), few of the genes that affect risk have been identified. We performed whole-exome sequence analysis of individuals in a high-risk family without mutations in genes previously associated with CRC risk to identify variants associated with inherited CRC. METHODS: We collected blood samples from 3 relatives with CRC in Spain (65, 62, and 40 years old at diagnosis) and performed whole-exome sequence analyses. Rare missense, truncating or splice-site variants shared by the 3 relatives were selected. We used targeted pooled DNA amplification followed by next generation sequencing to screen for mutations in candidate genes in 547 additional hereditary and/or early-onset CRC cases (502 additional families). We carried out protein-dependent yeast growth assays and transfection studies in the HT29 human CRC cell line to test the effects of the identified variants. RESULTS: A total of 42 unique or rare (population minor allele frequency below 1%) nonsynonymous genetic variants in 38 genes were shared by all 3 relatives. We selected the BRF1 gene, which encodes an RNA polymerase III transcription initiation factor subunit for further analysis, based on the predicted effect of the identified variant and previous association of BRF1 with cancer. Previously unreported or rare germline variants in BRF1 were identified in 11 of 503 CRC families, a significantly greater proportion than in the control population (34 of 4300). Seven of the identified variants (1 detected in 2 families) affected BRF1 mRNA splicing, protein stability, or expression and/or function. CONCLUSIONS: In an analysis of families with a history of CRC, we associated germline mutations in BRF1 with predisposition to CRC. We associated deleterious BRF1 variants with 1.4% of familial CRC cases, in individuals without mutations in high-penetrance genes previously associated with CRC. Our findings add additional evidence to the link between defects in genes that regulate ribosome synthesis and risk of CRC.


Asunto(s)
Neoplasias Colorrectales/genética , Mutación de Línea Germinal/genética , Factores Asociados con la Proteína de Unión a TATA/genética , Adulto , Anciano , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/patología , Femenino , Predisposición Genética a la Enfermedad/genética , Humanos , Masculino , Persona de Mediana Edad , Linaje , España
8.
Hum Mutat ; 39(9): 1214-1225, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29900613

RESUMEN

The causal association of NUDT1 (=MTH1) and OGG1 with hereditary colorectal cancer (CRC) remains unclear. Here, we sought to provide additional evidence for or against the causal contribution of NUDT1 and OGG1 mutations to hereditary CRC and/or polyposis. Mutational screening was performed using pooled DNA amplification and targeted next-generation sequencing in 529 families (441 uncharacterized MMR-proficient familial nonpolyposis CRC and 88 polyposis cases). Cosegregation, in silico analyses, in vitro functional assays, and case-control associations were carried out to characterize the identified variants. Five heterozygous carriers of novel (n = 1) or rare (n = 4) NUDT1 variants were identified. In vitro deleterious effects were demonstrated for c.143G>A p.G48E (catalytic activity and protein stability) and c.403G>T p.G135W (protein stability), although cosegregation data in the carrier families were inconclusive or nonsupportive. The frequency of missense, loss-of-function, and splice-site NUDT1 variants in our familial CRC cohort was similar to the one observed in cancer-free individuals, suggesting lack of association with CRC predisposition. No OGG1 pathogenic mutations were identified. Our results suggest that the contribution of NUDT1 and OGG1 germline mutations to hereditary CRC and to polyposis is inexistent or, at most, negligible. The inclusion of these genes in routine genetic testing is not recommended.


Asunto(s)
Poliposis Adenomatosa del Colon/genética , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , ADN Glicosilasas/genética , Enzimas Reparadoras del ADN/genética , Monoéster Fosfórico Hidrolasas/genética , Poliposis Adenomatosa del Colon/patología , Neoplasias Colorrectales Hereditarias sin Poliposis/patología , Reparación del ADN/genética , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Variación Genética/genética , Genotipo , Mutación de Línea Germinal/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mutación con Pérdida de Función/genética , Masculino , Mutación Missense/genética , Estrés Oxidativo , Isoformas de Proteínas/genética
9.
Mol Cancer ; 17(1): 23, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29448935

RESUMEN

Germline mutations in BUB1 and BUB3 have been reported to increase the risk of developing colorectal cancer (CRC) at young age, in presence of variegated aneuploidy and reminiscent dysmorphic traits of mosaic variegated aneuploidy syndrome. We performed a mutational analysis of BUB1 and BUB3 in 456 uncharacterized mismatch repair-proficient hereditary non-polyposis CRC families and 88 polyposis cases. Four novel or rare germline variants, one splice-site and three missense, were identified in four families. Neither variegated aneuploidy nor dysmorphic traits were observed in carriers. Evident functional effects in the heterozygous form were observed for c.1965-1G>A, but not for c.2296G>A (p.E766K), in spite of the positive co-segregation in the family. BUB1 c.2473C>T (p.P825S) and BUB3 c.77C>T (p.T26I) remained as variants of uncertain significance. As of today, the rarity of functionally relevant mutations identified in familial and/or early onset series does not support the inclusion of BUB1 and BUB3 testing in routine genetic diagnostics of familial CRC.


Asunto(s)
Poliposis Adenomatosa del Colon/genética , Proteínas de Ciclo Celular/genética , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Mutación de Línea Germinal , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteínas Serina-Treonina Quinasas/genética , Huso Acromático/genética , Proteínas de Ciclo Celular/química , Humanos , Modelos Moleculares , Linaje , Proteínas de Unión a Poli-ADP-Ribosa/química , Conformación Proteica , Proteínas Serina-Treonina Quinasas/química
11.
J Neurooncol ; 122(3): 441-50, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25682093

RESUMEN

Clinical and molecular prognostic factors in gliomas include age, IDH mutation, the glioma CpG island methylator phenotype (G-CIMP+) and promoter methylation of the O(6)-methylguanine DNA-methyltransferase (MGMT) gene. Among these markers, a predictive value was reported in glioblastomas (GBM) for MGMT promoter methylation, in particular in elderly GBM patients. In this study, methylation data from 46 glioma samples with the Illumina 450K platform were obtained and extended using external data to include a total of 247 glioma samples. Methylation analysis of the whole MGMT gene with this platform revealed two strongly survival-associated CpG regions within the promoter and the gene body, which were confirmed in a reported dataset of high grade-gliomas. Methylation at the promoter (CpG 25, cg12981137 and the prognostic model MGMT-STP27) and at the gene body CpG 165 (cg07933035), were significantly associated with better overall survival, and strongly correlated with G-CIMP+ status. In this series, the prognostic value of MGMT methylation at the promoter was not observed in G-CIMP- cases, although around 50 % of them were MGMT-methylated. These results were also obtained in an homogeneously-treated series of chemoradiated G-CIMP- GBMs analyzed by MSP and qMSP, and confirmed in a reported pyrosequencing-analyzed series of gliomas. Interestingly, in contrast to the MGMT promoter, gene body methylation was of prognostic value in G-CIMP-patients older than 65 years. Our study highlights the relevance of the prognostic value of the different regions of methylation throughout the MGMT gene that could be affected by specific G-CIMP profiles and age groups.


Asunto(s)
Neoplasias Encefálicas/genética , Islas de CpG/genética , Metilación de ADN/genética , Metilasas de Modificación del ADN/genética , Enzimas Reparadoras del ADN/genética , Glioma/genética , Proteínas Supresoras de Tumor/genética , Adulto , Factores de Edad , Anciano , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/mortalidad , Femenino , Perfilación de la Expresión Génica , Glioma/diagnóstico , Glioma/mortalidad , Humanos , Masculino , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Análisis de Componente Principal , Pronóstico , Regiones Promotoras Genéticas/genética , Análisis de Supervivencia , Adulto Joven
13.
Cancer Res Commun ; 4(1): 213-225, 2024 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-38282550

RESUMEN

POLE driver mutations in the exonuclease domain (ExoD driver) are prevalent in several cancers, including colorectal cancer and endometrial cancer, leading to dramatically ultra-high tumor mutation burden (TMB). To understand whether POLE mutations that are not classified as drivers (POLE Variant) contribute to mutagenesis, we assessed TMB in 447 POLE-mutated colorectal cancers, endometrial cancers, and ovarian cancers classified as TMB-high ≥10 mutations/Mb (mut/Mb) or TMB-low <10 mut/Mb. TMB was significantly highest in tumors with "POLE ExoD driver plus POLE Variant" (colorectal cancer and endometrial cancer, P < 0.001; ovarian cancer, P < 0.05). TMB increased with additional POLE variants (P < 0.001), but plateaued at 2, suggesting an association between the presence of these variants and TMB. Integrated analysis of AlphaFold2 POLE models and quantitative stability estimates predicted the impact of multiple POLE variants on POLE functionality. The prevalence of immunogenic neoepitopes was notably higher in the "POLE ExoD driver plus POLE Variant" tumors. Overall, this study reveals a novel correlation between POLE variants in POLE ExoD-driven tumors, and ultra-high TMB. Currently, only select pathogenic ExoD mutations with a reliable association with ultra-high TMB inform clinical practice. Thus, these findings are hypothesis-generating, require functional validation, and could potentially inform tumor classification, treatment responses, and clinical outcomes. SIGNIFICANCE: Somatic POLE ExoD driver mutations cause proofreading deficiency that induces high TMB. This study suggests a novel modifier role for POLE variants in POLE ExoD-driven tumors, associated with ultra-high TMB. These data, in addition to future functional studies, may inform tumor classification, therapeutic response, and patient outcomes.


Asunto(s)
Neoplasias Colorrectales , Neoplasias Endometriales , Neoplasias Ováricas , Femenino , Humanos , Mutágenos , Exonucleasas/genética , Proteínas de Unión a Poli-ADP-Ribosa/genética , ADN Polimerasa II/genética , Mutación/genética , Neoplasias Endometriales/genética , Mutagénesis , Neoplasias Ováricas/epidemiología , Neoplasias Colorrectales/genética
14.
Eur J Hum Genet ; 32(7): 837-845, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38658779

RESUMEN

Constitutional heterozygous pathogenic variants in the exonuclease domain of POLE and POLD1, which affect the proofreading activity of the corresponding polymerases, cause a cancer predisposition syndrome characterized by increased risk of gastrointestinal polyposis, colorectal cancer, endometrial cancer and other tumor types. The generally accepted explanation for the connection between the disruption of the proofreading activity of polymerases epsilon and delta and cancer development is through an increase in the somatic mutation rate. Here we studied an extended family with multiple members heterozygous for the pathogenic POLD1 variant c.1421T>C p.(Leu474Pro), which segregates with the polyposis and cancer phenotypes. Through the analysis of mutational patterns of patient-derived fibroblasts colonies and de novo mutations obtained by parent-offspring comparisons, we concluded that heterozygous POLD1 L474P just subtly increases the somatic and germline mutation burden. In contrast, tumors developed in individuals with a heterozygous mutation in the exonuclease domain of POLD1, including L474P, have an extremely high mutation rate (>100 mut/Mb) associated with signature SBS10d. We solved this contradiction through the observation that tumorigenesis involves somatic inactivation of the wildtype POLD1 allele. These results imply that exonuclease deficiency of polymerase delta has a recessive effect on mutation rate.


Asunto(s)
ADN Polimerasa III , Humanos , ADN Polimerasa III/genética , ADN Polimerasa III/metabolismo , Femenino , Masculino , Linaje , Heterocigoto , Genes Recesivos , Neoplasias/genética , Neoplasias/patología , Mutación , Mutación de Línea Germinal , Adulto
15.
Acta Neuropathol ; 126(2): 277-89, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23689617

RESUMEN

Oligodendroglial tumors (OTs) are primary brain tumors that show variable clinical and biological behavior. The 1p/19q codeletion is frequent in these tumors, indicating a better prognosis and/or treatment response. Recently, the prognostically favorable CpG island methylator phenotype (CIMP) in gliomas (G-CIMP+) was associated with mutations in the isocitrate dehydrogenase 1 and isocitrate dehydrogenase 2 (IDH) genes, as opposed to G-CIMP- tumors, highlighting the relevance of epigenetic mechanisms. We performed a whole-genome methylation study in 46 OTs, and a gene expression study of 25 tumors, correlating the methylation and transcriptomic profiles with molecular and clinical variables. Here, we identified two different epigenetic patterns within the previously described main G-CIMP+ profile. Both IDH mutation-associated methylation profiles featured one group of OTs with 1p/19q loss (CD-CIMP+), most of which were pure oligodendrogliomas, and a second group with intact 1p/19q and frequent TP53 mutation (CIMP+), most of which exhibited a mixed histopathology. A third group of OTs lacking the CIMP profile (CIMP-), and with a wild-type IDH and an intact 1p/19q, similar to the G-CIMP- subgroup, was also observed. The three CIMP groups presented a significantly better (CD-CIMP+), intermediate (CIMP+) or worse (CIMP-) prognosis. Furthermore, transcriptomic analyses revealed CIMP-specific gene expression signatures, indicating the impact of genetic status (IDH mutation, 1p/19q codeletion, TP53 mutation) on gene expression, and pointing to candidate biomarkers. Therefore, the CIMP profiles contributed to the identification of subgroups of OTs characterized by different prognoses, histopathologies, molecular features and gene expression signatures, which may help in the classification of OTs.


Asunto(s)
Neoplasias Encefálicas/genética , Metilación de ADN/genética , Isocitrato Deshidrogenasa/genética , Oligodendroglioma/genética , Neoplasias Encefálicas/mortalidad , Cromosomas Humanos Par 1 , Cromosomas Humanos Par 19 , Regulación Neoplásica de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Estimación de Kaplan-Meier , Oligodendroglioma/mortalidad , Pronóstico , Transcriptoma , Proteína p53 Supresora de Tumor/genética
16.
Genome Med ; 15(1): 85, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37848928

RESUMEN

BACKGROUND: Germline variants affecting the proofreading activity of polymerases epsilon and delta cause a hereditary cancer and adenomatous polyposis syndrome characterized by tumors with a high mutational burden and a specific mutational spectrum. In addition to the implementation of multiple pieces of evidence for the classification of gene variants, POLE and POLD1 variant classification is particularly challenging given that non-disruptive variants affecting the proofreading activity of the corresponding polymerase are the ones associated with cancer. In response to an evident need in the field, we have developed gene-specific variant classification recommendations, based on the ACMG/AMP (American College of Medical Genetics and Genomics/Association for Molecular Pathology) criteria, for the assessment of non-disruptive variants located in the sequence coding for the exonuclease domain of the polymerases. METHODS: A training set of 23 variants considered pathogenic or benign was used to define the usability and strength of the ACMG/AMP criteria. Population frequencies, computational predictions, co-segregation data, phenotypic and tumor data, and functional results, among other features, were considered. RESULTS: Gene-specific variant classification recommendations for non-disruptive variants located in the exonuclease domain of POLE and POLD1 were defined. The resulting recommendations were applied to 128 exonuclease domain variants reported in the literature and/or public databases. A total of 17 variants were classified as pathogenic or likely pathogenic, and 17 as benign or likely benign. CONCLUSIONS: Our recommendations, with room for improvement in the coming years as more information become available on carrier families, tumor molecular characteristics and functional assays, are intended to serve the clinical and scientific communities and help improve diagnostic performance, avoiding variant misclassifications.


Asunto(s)
Poliposis Adenomatosa del Colon , Neoplasias Colorrectales , Humanos , Estados Unidos , Neoplasias Colorrectales/genética , Exonucleasas , ADN Polimerasa II/genética , Poliposis Adenomatosa del Colon/diagnóstico , Poliposis Adenomatosa del Colon/genética , Células Germinativas , ADN Polimerasa III/genética
18.
Cancers (Basel) ; 14(3)2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35158968

RESUMEN

The ALFRED (Allelic Loss Featuring Rare Damaging) in silico method was developed to identify cancer predisposition genes through the identification of somatic second hits. By applying ALFRED to ~10,000 tumor exomes, 49 candidate genes were identified. We aimed to assess the causal association of the identified genes with colorectal cancer (CRC) predisposition. Of the 49 genes, NSD1, HDAC10, KRT24, ACACA and TP63 were selected based on specific criteria relevant for hereditary CRC genes. Gene sequencing was performed in 736 patients with familial/early onset CRC or polyposis without germline pathogenic variants in known genes. Twelve (predicted) damaging variants in 18 patients were identified. A gene-based burden test in 1596 familial/early-onset CRC patients, 271 polyposis patients, 543 TCGA CRC patients and >134,000 controls (gnomAD, non-cancer), revealed no clear association with CRC for any of the studied genes. Nevertheless, (non-significant) over-representation of disruptive variants in NSD1, KRT24 and ACACA in CRC patients compared to controls was observed. A somatic second hit was identified in one of 20 tumors tested, corresponding to an NSD1 carrier. In conclusion, most genes identified through the ALFRED in silico method were not relevant for CRC predisposition, although a possible association was detected for NSD1, KRT24 and ACACA.

19.
Eur J Hum Genet ; 30(4): 485-489, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34285382

RESUMEN

Germline variants that affect the proofreading activity of polymerases epsilon (POLE) and delta (POLD1) predispose to colorectal adenomas and carcinomas, among other cancers. All cancer-associated pathogenic variants reported to date consist of non-disruptive genetic changes affecting the sequence that codifies the exonuclease domain (ED). Generally, disruptive (frameshift, stop-gain) POLE and POLD1 variants and missense variants outside the ED do not predispose to cancer. However, this statement may not be true for some, very specific variants that would indirectly affect the proofreading activity of the corresponding polymerase. We evaluated, by using multiple approaches, the possibility that POLD1 c.883G>A; p.(Val295Met), -a variant located 9 amino acids upstream the ED and present in ~0.25% of hereditary cancer patients-, affects POLD1 proofreading activity. Our findings show cumulative evidence that support no alteration of the proofreading activity and lack of association with cancer. The variant is classified as likely benign according to the ACMG/AMP guidelines.


Asunto(s)
Adenoma , Neoplasias Colorrectales , ADN Polimerasa III , Adenoma/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , ADN Polimerasa II/química , ADN Polimerasa II/genética , ADN Polimerasa III/química , ADN Polimerasa III/genética , Mutación de Línea Germinal , Humanos , Proteínas de Unión a Poli-ADP-Ribosa/genética
20.
Cells ; 10(3)2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33806975

RESUMEN

Early-onset colorectal cancer (EOCRC), defined as that diagnosed before the age of 50, accounts for 10-12% of all new colorectal cancer (CRC) diagnoses. Epidemiological data indicate that EOCRC incidence is increasing, despite the observed heterogeneity among countries. Although the cause for such increase remains obscure, ≈13% (range: 9-26%) of EOCRC patients carry pathogenic germline variants in known cancer predisposition genes, including 2.5% of patients with germline pathogenic variants in hereditary cancer genes traditionally not associated with CRC predisposition. Approximately 28% of EOCRC patients have family history of the disease. This article recapitulates current evidence on the inherited syndromes that predispose to EOCRC and its familial component. The evidence gathered support that all patients diagnosed with an EOCRC should be referred to a specialized genetic counseling service and offered somatic and germline pancancer multigene panel testing. The identification of a germline pathogenic variant in a known hereditary cancer gene has relevant implications for the clinical management of the patient and his/her relatives, and it may guide surgical and therapeutic decisions. The relative high prevalence of hereditary cancer syndromes and familial component among EOCRC patients supports further research that helps understand the genetic background, either monogenic or polygenic, behind this increasingly common disease.


Asunto(s)
Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Patrón de Herencia/genética , Edad de Inicio , Alelos , Familia , Asesoramiento Genético , Predisposición Genética a la Enfermedad , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA