RESUMEN
Crohn's disease (CD) is a type of inflammatory bowel disease (IBD) affecting the gastrointestinal tract that can also cause extra-intestinal complications. Following exposure to the mRNA vaccine BNT162b2 (Pfizer-BioNTech) encoding the SARS-CoV-2 Spike (S) protein, some patients experienced a lack of response to the biological drug Adalimumab and a recrudescence of the disease. In CD patients in progression, resistant to considered biological therapy, an abnormal increase in intestinal permeability was observed, more often with a modulated expression of different proteins such as Aquaporin 8 (AQP8) and in tight junctions (e.g., ZO-1, Claudin1, Claudin2, Occludin), especially during disease flares. The aim of this study is to investigate how the SARS-CoV-2 vaccine could interfere with IBD therapy and contribute to disease exacerbation. We investigated the role of the SARS-CoV-2 Spike protein, transported by extracellular vesicles (EVs), and the impact of various EVs components, namely, exosomes (EXOs) and microvesicles (MVs), in modulating the expression of molecules involved in the exacerbation of CD, which remains unknown.
Asunto(s)
Adalimumab , COVID-19 , Enfermedad de Crohn , Vesículas Extracelulares , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , Enfermedad de Crohn/tratamiento farmacológico , Enfermedad de Crohn/metabolismo , Adalimumab/uso terapéutico , Adalimumab/efectos adversos , COVID-19/prevención & control , COVID-19/inmunología , Vesículas Extracelulares/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas contra la COVID-19/efectos adversos , Vacuna BNT162 , Femenino , Masculino , AdultoRESUMEN
Non-targeted NMR is widely accepted as a powerful and robust analytical tool for food control. Nevertheless, standardized procedures based on validated methods are still needed when a non-targeted approach is adopted. Interlaboratory comparisons carried out in recent years have demonstrated the statistical equivalence of spectra generated by different instruments when the sample was prepared by the same operator. The present study focused on assessing the reproducibility of NMR spectra of the same matrix when different operators performed individually both the sample preparation and the measurements using their spectrometer. For this purpose, two independent laboratories prepared 63 tomato samples according to a previously optimized procedure and recorded the corresponding 1D 1H NMR spectra. A classification model was built using the spectroscopic fingerprint data delivered by the two laboratories to assess the geographical origin of the tomato samples. The performance of the optimized statistical model was satisfactory, with a 97.62% correct sample classification rate. The results of this work support the suitability of NMR techniques in food control routines even when samples are prepared by different operators by using their equipment in independent laboratories.
Asunto(s)
Análisis de los Alimentos , Espectroscopía de Resonancia Magnética , Solanum lycopersicum , Solanum lycopersicum/química , Espectroscopía de Resonancia Magnética/métodos , Análisis de los Alimentos/métodos , Reproducibilidad de los ResultadosRESUMEN
Olive quick decline syndrome (OQDS) is a disease that has been seriously affecting olive trees in southern Italy since around 2009. During the disease, caused by Xylella fastidiosa subsp. pauca sequence type ST53 (Xf), the flow of water and nutrients within the trees is significantly compromised. Initially, infected trees may not show any symptoms, making early detection challenging. In this study, young artificially infected plants of the susceptible cultivar Cellina di Nardò were grown in a controlled environment and co-inoculated with additional xylem-inhabiting fungi. Asymptomatic leaves of olive plants at an early stage of infection were collected and analyzed using nuclear magnetic resonance (NMR), hyperspectral reflectance (HSR), and chemometrics. The application of a spectranomic approach contributed to shedding light on the relationship between the presence of specific hydrosoluble metabolites and the optical properties of both asymptomatic Xf-infected and non-infected olive leaves. Significant correlations between wavebands located in the range of 530-560 nm and 1380-1470 nm, and the following metabolites were found to be indicative of Xf infection: malic acid, fructose, sucrose, oleuropein derivatives, and formic acid. This information is the key to the development of HSR-based sensors capable of early detection of Xf infections in olive trees.
Asunto(s)
Olea , Xylella , Olea/metabolismo , Enfermedades de las Plantas/microbiologíaRESUMEN
By using the Suzuki-Miyaura protocol, a simple straightforward synthesis of functionalized 2-arylaziridines has been developed. By means of this synthetic strategy from readily available ortho-, meta- and para-bromophenylaziridines and aryl- or heteroarylboronic acids, new aziridines could be obtained. The cross-coupling reactions occurred without ring opening of the three membered ring. Preliminary results on the antimicrobial activity of the heterosubstituted biaryl compounds have been also included.
Asunto(s)
Antiinfecciosos/síntesis química , Antiinfecciosos/farmacología , Aziridinas/síntesis química , Aziridinas/farmacología , Bacterias/efectos de los fármacos , Técnicas de Química Sintética , Hongos/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Estructura MolecularRESUMEN
The ionic exchange membranes represent a core component of redox flow batteries. Their features strongly affect the performance, durability, cost, and efficiency of these energy systems. Herein, the operating conditions of a lab-scale single-cell vanadium flow battery (VRFB) were optimized in terms of membrane physicochemical features and electrolyte composition, as a way to translate such conditions into a large-scale five-cell VRFB stack system. The effects of the sulfonation degree (SD) and the presence of a filler on the performances of sulfonated poly(ether ether ketone) (SPEEK) ion-selective membranes were investigated, using the commercial perfluorosulfonic-acid Nafion 115 membrane as a reference. Furthermore, the effect of a chloride-based electrolyte was evaluated by comparing it to the commonly used standard sulfuric acid electrolyte. Among the investigated membranes, the readily available SPEEK50-0 (SD = 50%; filler = 0%) resulted in it being permeable and selective to vanadium. Improved coulombic efficiency (93.4%) compared to that of Nafion 115 (88.9%) was achieved when SPEEK50-0, in combination with an optimized chloride-based electrolyte, was employed in a single-cell VRFB at a current density of 20 mA·cm-2. The optimized conditions were successfully applied for the construction of a five-cell VRFB stack system, exhibiting a satisfactory coulombic efficiency of 94.5%.
RESUMEN
The widespread practice of dromedary urinotherapy as a remedy for various illnesses, including cancer, is well-established in traditional dromedary countries. Researchers attempted to demonstrate anticancer properties of camel urine through in vitro experiments with debated outcomes. Notably, two critical aspects remained unexplored in those assays: (i) the osmolarity of tested urines, which can significantly influence in vitro results; (ii) the potential morphological changes of cells, following exposure to camel urines. In this study, we addressed these gaps by evaluating the osmolarity-dependent modulation of cell viability in human renal cell lines. In this regard, we assessed the impact of hyperosmolar mannitol-based solutions and dromedary urine on the viability and morphology of human non-tumor (HK2) and tumor renal cells (Caki-1). The results indicate that cell viability or morphology in both HK2 and Caki-1 cells are not significantly affected only if mannitol-induced hyperosmolarity is lower than 500 mOsm/L. Notably, when exposed to urine solution, diluted to <500 mOsm/L, statistically significant antiproliferative effects were observed primarily in Caki-1 cells (in presence of two out of ten tested urine samples). Conversely, alterations in cell morphology were observed exclusively in HK2 cells when exposed to the same diluted camel urines. In order to investigate, at molecular level, the observed antiproliferative effects, a preliminary metabolomics analysis of the tested urine samples was performed to identify potential bioactive compounds. The Nuclear Magnetic Resonance (NMR) metabolic profiling revealed the presence of three antioxidant compounds, namely trigonelline, pyruvic acid and N-acetylglucosamine. In conclusion, our results highlight the importance of considering the critical role of osmolarity when evaluating the bioactive properties of camel urine in vitro, which should not be used to treat any illness as it is. Conversely, it can be considered the possibility to use camel urines as a source of bioactive compounds.
RESUMEN
Flow chemistry: A flow-microreactor-mediated synthesis of 1,2,3,4-tetrahydroisoquinolines (THIQs) is reported (see scheme). Starting from a laterally lithiated aziridine, a tetrahydroisoquinoline lithiated at C4 was generated by thermally induced isomerization. Because the reaction temperature is a crucial parameter, the exquisite thermal control possible in a flow-microreactor system allowed for fast, efficient, and highly reproducible synthesis of functionalized aziridines or THIQs.
Asunto(s)
Aziridinas/síntesis química , Litio/química , Tetrahidroisoquinolinas/síntesis química , Aziridinas/química , Estructura Molecular , Estereoisomerismo , Temperatura , Tetrahidroisoquinolinas/químicaRESUMEN
Verifying the quality and authenticity of agri-food products is essential to guaranteeing adequate food safety for consumers [...].
RESUMEN
Xylella fastidiosa subsp. pauca ST53 (Xfp) is a pathogenic bacterium causing one of the most severe plant diseases currently threatening the olive-growing areas of the Mediterranean, the Olive Quick Decline Syndrome (OQDS). The majority of the olive cultivars upon infections more or less rapidly develop severe desiccation phenomena, while few are resistant (e.g. Leccino and FS17), being less impacted by the infections. The present study contributes to elucidating the basis of the resistance phenomenon by investigating the influence of the composition of the xylem sap of plant species on the rate of bacterial multiplication. Xylem saps from Xfp host and non-host species were used for growing the bacterium in vitro, monitoring bacterial growth, biofilm formation, and the expression of specific genes. Moreover, species-specific metabolites, such as mannitol, quinic acid, tartaric acid, and choline were identified by non-targeted NMR-based metabolomic analysis in olive, grapevine, and citrus. In general, the xylem saps of immune species, including grapevine and citrus, were richer in amino acids, organic acids, and glucose. The results showed greater bacterial growth in the olive cultivar notoriously susceptible to Xfp (Cellina di Nardò), compared to that recorded in the resistant cultivar Leccino. Conversely, higher biofilm formation occurred in Leccino compared to Cellina di Nardò. Using the xylem saps of two Xfp-immune species (citrus and grapevine), a divergent bacterial behavior was recorded: low planktonic growth and biofilm production were detected in citrus compared to the grapevine. A parallel evaluation of the expression of 15 genes showed that Xfp directs its molecular functions mainly to virulence. Overall, the results gained through this multidisciplinary study contribute to extending the knowledge on the host-pathogen interaction, while confirming that the host response and resistance mechanism have a multifactorial basis, most likely with a cumulative effect on the phenotype.
RESUMEN
Mitochondria and mitochondrial proteins represent a group of promising pharmacological target candidates in the search of new molecular targets and drugs to counteract the onset of hypertension and more in general cardiovascular diseases (CVDs). Indeed, several mitochondrial pathways result impaired in CVDs, showing ATP depletion and ROS production as common traits of cardiac tissue degeneration. Thus, targeting mitochondrial dysfunction in cardiomyocytes can represent a successful strategy to prevent heart failure. In this context, the identification of new pharmacological targets among mitochondrial proteins paves the way for the design of new selective drugs. Thanks to the advances in omics approaches, to a greater availability of mitochondrial crystallized protein structures and to the development of new computational approaches for protein 3D-modelling and drug design, it is now possible to investigate in detail impaired mitochondrial pathways in CVDs. Furthermore, it is possible to design new powerful drugs able to hit the selected pharmacological targets in a highly selective way to rescue mitochondrial dysfunction and prevent cardiac tissue degeneration. The role of mitochondrial dysfunction in the onset of CVDs appears increasingly evident, as reflected by the impairment of proteins involved in lipid peroxidation, mitochondrial dynamics, respiratory chain complexes, and membrane polarization maintenance in CVD patients. Conversely, little is known about proteins responsible for the cross-talk between mitochondria and cytoplasm in cardiomyocytes. Mitochondrial transporters of the SLC25A family, in particular, are responsible for the translocation of nucleotides (e.g., ATP), amino acids (e.g., aspartate, glutamate, ornithine), organic acids (e.g. malate and 2-oxoglutarate), and other cofactors (e.g., inorganic phosphate, NAD+, FAD, carnitine, CoA derivatives) between the mitochondrial and cytosolic compartments. Thus, mitochondrial transporters play a key role in the mitochondria-cytosol cross-talk by leading metabolic pathways such as the malate/aspartate shuttle, the carnitine shuttle, the ATP export from mitochondria, and the regulation of permeability transition pore opening. Since all these pathways are crucial for maintaining healthy cardiomyocytes, mitochondrial carriers emerge as an interesting class of new possible pharmacological targets for CVD treatments.
Asunto(s)
Enfermedades Cardiovasculares , Hipertensión , Daño por Reperfusión , Humanos , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/metabolismo , Malatos/metabolismo , Ácido Aspártico/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Hipertensión/metabolismo , Proteínas Mitocondriales/metabolismo , Daño por Reperfusión/metabolismo , Adenosina Trifosfato/metabolismoRESUMEN
Herein we report a new straightforward synthesis of cis and trans 2,5-disubstituted N,N-dialkylpiperazines, even in enantioenriched form, by reacting non-activated N-alkyl arylaziridines in the presence of a catalytic amount of a Lewis acid. A stereochemical and NMR investigation revealed useful mechanistic insights for this process.
Asunto(s)
Aziridinas/química , Piperazinas/química , Aziridinas/síntesis química , Catálisis , Ácidos de Lewis/química , Espectroscopía de Resonancia Magnética , Piperazinas/síntesis química , EstereoisomerismoRESUMEN
A metabolic feature of lactic acid bacteria (LAB) is the production of exopolysaccharides (EPSs), which have technological and functional properties of interest to the food sector. The present study focused on the characterization of the Weissella cibaria strain C43-11, a high EPS producer in the presence of sucrose, in comparison with a low-producing strain (C2-32), and on possible genetic regulatory elements responsible for the modulation of dextransucrase (dsr) genes expression. NMR analysis of the polymeric material produced by the C43-11 strain indicated the presence of dextran consisting mainly of a linear scaffold formed by α-(1-6) glycosidic linkages and a smaller amounts of branches derived from α-(1-2), α-(1-3), and α-(1-4) linkages. Molecular analysis of the dsr genes and the putative transcriptional promoters of the two strains showed differences in their regulatory regions. Such variations may have a role in the modulation of dsr expression levels in the presence of sucrose. The strong upregulation of the dsr gene in the C43-11 strain resulted in a high accumulation of EPS. This is the first report showing differences in the regulatory elements of the dsr gene in W. cibaria and indicates a new perspective of investigation to identify the regulatory mechanism of EPS production.
RESUMEN
A highly stereo- and regioselective functionalisation of chiral non-racemic aziridines is reported. By starting from a parent enantioenriched aziridine and finely tuning the reaction conditions, it is possible to address the regio- and stereoselectivity of the lithiation/electrophile trapping sequence, thereby allowing the preparation of highly enantioenriched functionalised aziridines. From chiral N-alkyl trans-2,3-diphenylaziridines (S,S)-1 a,b, two differently configured chiral aziridinyllithiums could be generated (trans-1 a,b-Li in toluene and cis-1 a,b-Li in THF), thus disclosing a solvent-dependent reactivity that is useful for the synthesis of chiral tri-substituted aziridines with different stereochemistry. In contrast, chiral aziridine (S,S)-1 c showed a temperature-dependent reactivity to give chiral ortho-lithiated aziridine 1 c-ortho-Li at -78 °C and α-lithiated aziridine 1 c-α-Li at 0 °C. Both lithiated intermediates react with electrophiles to give enantioenriched ortho- and α-functionalised aziridines. The reaction of all the lithiated aziridines with carbonyl compounds furnished useful chiral hydroxyalkylated derivatives, the stereochemistry of which was ascertained by X-ray and NMR spectroscopic analysis. The usefulness of chiral non-racemic functionalised aziridines has been demonstrated by reductive ring-opening reactions furnishing chiral amines that bear quaternary stereogenic centres and chiral 1,2-, 1,3- and 1,5-aminoalcohols. It is remarkable that the solvent-dependent reactivity observed with (S,S)-1 a,b permits the preparation of both the enantiomers of amines (11 and ent-11) and 1,2-aminoalcohols (13 and ent-13) starting from the same parent aziridine. Interestingly, for the first time, a configurationally stable chiral α-lithiated aziridine (1 c-α-Li) has been generated at 0 °C. In addition, ortho-hydroxyalkylated aziridines have been easily converted into chiral aminoalkyl phthalans, which are useful building blocks in medicinal chemistry.
Asunto(s)
Aminas/síntesis química , Amino Alcoholes/síntesis química , Aziridinas/química , Aminas/química , Amino Alcoholes/química , Litio/química , Estructura Molecular , Oxidación-Reducción , Solventes , EstereoisomerismoRESUMEN
BH(3) complexes of N-alkyl-2-phenylaziridines have been synthesized and their structure and stereochemistry proved with DFT calculations and NMR experiments. It has been demonstrated that the Lewis acid complexation is able to promote a regioselective ß-lithiation in 2-phenylaziridino-borane complexes. The lithiated intermediates were configurationally stable, allowing an enantioselective preparation of cis-2,3-disubstituted aziridines.
Asunto(s)
Alcanos/química , Aziridinas/química , Boranos/química , Litio/química , Espectroscopía de Resonancia Magnética , Estructura Molecular , EstereoisomerismoRESUMEN
Non-targeted NMR-based approach has received great attention as a rapid method for food product authenticity assessment. The availability of a database containing many comparable NMR spectra produced by different spectrometers is crucial to develop functional classifiers able to discriminate rapidly the commodity class of a given food product. Nevertheless, variability in spectrometer features may hamper the production of comparable spectra due to inherent variations in signal resolution. In this paper, we report on the development of a class-discrimination model for grape juice authentication by application of non-targeted NMR spectroscopy. Different approaches for the pre-treatment of data will be described along with details about the model validation. The developed model performed excellently (95.4-100% correct predictions) even when it was tested against 650 spectra produced by 65 spectrometers with different configurations (magnetic field strength, manufacturer, age). This study may boost the use of non-targeted NMR methods for food control.
Asunto(s)
Análisis de los Alimentos/métodos , Calidad de los Alimentos , Campos Magnéticos , Espectroscopía de Resonancia Magnética/métodos , Bases de Datos Factuales , Jugos de Frutas y Vegetales/análisis , Vitis/químicaRESUMEN
Nuclear Magnetic Resonance (NMR) is an analytical technique extensively used in almost every chemical laboratory for structural identification. This technique provides statistically equivalent signals in spite of using spectrometer with different hardware features and is successfully used for the traceability and quantification of analytes in food samples. Nevertheless, to date only a few internationally agreed guidelines have been reported on the use of NMR for quantitative analysis. The main goal of the present study is to provide a methodological pipeline to assess the reproducibility of NMR data produced for a given matrix by spectrometers from different manufacturers, with different magnetic field strengths, age and hardware configurations. The results have been analyzed through a sequence of chemometric tests to generate a community-built calibration system which was used to verify the performance of the spectrometers and the reproducibility of the predicted sample concentrations.
Asunto(s)
Jugos de Frutas y Vegetales/análisis , Vitis/química , Calibración , Espectroscopía de Resonancia MagnéticaRESUMEN
The lithiation reaction of o-tolylaziridine 1 has been investigated by using the aziridine ring capability to act as a directing metalation group. Trapped with electrophiles, the resulting o-aziridinyl benzyllithium 1-Li gives access to several functionalized aziridines 2a-j. The hydroxyalkylated derivatives 2d-j were converted into important scaffolds such as isochromans 3a-d. A stereoselective preparation of isochromans (R)-3b, (1R,3S)-3d, and (1R,3R)-3d has been developed starting from enantioenriched o-tolylaziridine.
Asunto(s)
Aziridinas/química , Cromanos/química , Cromanos/síntesis química , Litio/química , Alquilación , EstereoisomerismoRESUMEN
The lithiation reaction of monophenyl- and diphenylaziridines has been investigated in detail in an effort to understand why the former undergo exclusively or mainly ortho-lithiation while the latter are lithiated exclusively at the alpha-position. Evidence is reported that ruled out the possibility that the alpha-lithiation, observed for the diphenylaziridines, is the result of an ortho- to alpha-translocation phenomenon, thus substantiating a direct alpha-deprotonation process. The role of the aziridine nitrogen lone-pair has been considered: dynamics at the aziridine nitrogen as well as complex-induced proximity effects seem to be responsible for the observed regioselectivity in both monophenyl and diphenylaziridines. It turns out that, by tuning the reaction conditions for the lithiation of trans-1-alkyl-2-methyl-3-phenylaziridines, it is possible to generate with high regioselectivity alpha- and/or ortho-lithiated aziridines, which can be stereoselectively functionalized by electrophilic trapping. A regioselective ortho-functionalization of diphenylaziridines is made possible by halogen- or tin-lithium exchange and by deprotonation of bis-deuterated aziridines.
Asunto(s)
Aziridinas/química , Química Orgánica/métodos , Nitrógeno/química , Electroquímica/métodos , Cromatografía de Gases y Espectrometría de Masas/métodos , Cinética , Espectroscopía de Resonancia Magnética , Modelos Químicos , TemperaturaRESUMEN
The difficulty in accessing and safely utilising non-stabilised diazo species has in the past limited the application of this class of compounds. Here we explore further the use of oxadiazolines, non-stabilised diazo precursors which are bench stable, in direct, non-catalytic, aldehyde C-H functionalisation reactions under UV photolysis in flow and free from additives. Commercially available aldehydes are coupled to afford unsymmetrical aryl-alkyl and alkyl-alkyl ketones while mild conditions and lack of transition metal catalysts allow for exceptional functional group tolerance. Examples are given on small scale and in a larger scale continuous production.
RESUMEN
[structure: see text]. The lithiation reaction of cis- and trans-N-alkyl-2,3-diphenylaziridines has been investigated. While cis-diphenylaziridines do not undergo any lithiation upon treatment with organolithiums, the lithiation reaction of the trans counterparts is completely alpha-regioselective and the stereochemical course of the lithiation-trapping sequence is solvent dependent: inversion of configuration in coordinating solvents (THF or toluene/crown ether) and retention in hexane, ether, or toluene. The preparation of stereodefined functionalized N-alkyl-2,3-diphenylaziridines is described.