Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 31(11): 1909-1919, 2022 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-35022715

RESUMEN

Refractive errors are associated with a range of pathological conditions, such as myopic maculopathy and glaucoma, and are highly heritable. Studies of missense and putative loss of function (pLOF) variants identified via whole exome sequencing (WES) offer the prospect of directly implicating potentially causative disease genes. We performed a genome-wide association study for refractive error in 51 624 unrelated adults, of European ancestry, aged 40-69 years from the UK and genotyped using WES. After testing 29 179 pLOF and 495 263 missense variants, 1 pLOF and 18 missense variants in 14 distinct genomic regions were taken forward for fine-mapping analysis. This yielded 19 putative causal variants of which 18 had a posterior inclusion probability >0.5. Of the 19 putative causal variants, 12 were novel discoveries. Specific variants were associated with a more myopic refractive error, while others were associated with a more hyperopic refractive error. Association with age of onset of spectacle wear (AOSW) was examined in an independent validation sample (38 100 early AOSW cases and 74 243 controls). Of 11 novel variants that could be tested, 8 (73%) showed evidence of association with AOSW status. This work identified COL4A4 and ATM as novel candidate genes associated with refractive error. In addition, novel putative causal variants were identified in the genes RASGEF1, ARMS2, BMP4, SIX6, GSDMA, GNGT2, ZNF652 and CRX. Despite these successes, the study also highlighted the limitations of community-based WES studies compared with high myopia case-control WES studies.


Asunto(s)
Miopía , Errores de Refracción , Adulto , Exoma/genética , Estudio de Asociación del Genoma Completo/métodos , Humanos , Miopía/genética , Proteínas de Neoplasias/genética , Proteínas Citotóxicas Formadoras de Poros , Errores de Refracción/genética , Secuenciación del Exoma
2.
Genes Immun ; 24(4): 200-206, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37488248

RESUMEN

Childhood-onset systemic lupus erythematosus (cSLE) patients are unique, with hallmarks of Mendelian disorders (early-onset and severe disease) and thus are an ideal population for genetic investigation of SLE. In this study, we use the transmission disequilibrium test (TDT), a family-based genetic association analysis that employs robust methodology, to analyze whole genome sequencing data. We aim to identify novel genetic associations in an ancestrally diverse, international cSLE cohort. Forty-two cSLE patients and 84 unaffected parents from 3 countries underwent whole genome sequencing. First, we performed TDT with single nucleotide variant (SNV)-based (common variants) using PLINK 1.9, and gene-based (rare variants) analyses using Efficient and Parallelizable Association Container Toolbox (EPACTS) and rare variant TDT (rvTDT), which applies multiple gene-based burden tests adapted for TDT, including the burden of rare variants test. Applying the GWAS standard threshold (5.0 × 10-8) to common variants, our SNV-based analysis did not return any genome-wide significant SNVs. The rare variant gene-based TDT analysis identified many novel genes significantly enriched in cSLE patients, including HNRNPUL2, a DNA repair protein, and DNAH11, a ciliary movement protein, among others. Our approach identifies several novel SLE susceptibility genes in an ancestrally diverse childhood-onset lupus cohort.


Asunto(s)
Desequilibrio de Ligamiento , Lupus Eritematoso Sistémico , Estudio de Asociación del Genoma Completo , Genoma Humano , Edad de Inicio , Lupus Eritematoso Sistémico/genética , Humanos , Masculino , Femenino , Niño , Adolescente , Variación Genética
3.
Int J Cancer ; 153(2): 364-372, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-36916144

RESUMEN

A unique approach with rare resources was used to identify candidate variants predisposing to familial nonsquamous nonsmall-cell lung cancers (NSNSCLC). We analyzed sequence data from NSNSCLC-affected cousin pairs belonging to high-risk lung cancer pedigrees identified in a genealogy of Utah linked to statewide cancer records to identify rare, shared candidate predisposition variants. Variants were tested for association with lung cancer risk in UK Biobank. Evidence for linkage with lung cancer was also reviewed in families from the Genetic Epidemiology of Lung Cancer Consortium. Protein prediction modeling compared the mutation with reference. We sequenced NSNSCLC-affected cousin pairs from eight high-risk lung cancer pedigrees and identified 66 rare candidate variants shared in the cousin pairs. One variant in the FGF5 gene also showed significant association with lung cancer in UKBiobank. This variant was observed in 3/163 additional sampled Utah lung cancer cases, 2 of whom were related in another independent pedigree. Modeling of the predicted protein predicted a second binding site for SO4 that may indicate binding differences. This unique study identified multiple candidate predisposition variants for NSNSCLC, including a rare variant in FGF5 that was significantly associated with lung cancer risk and that segregated with lung cancer in the two pedigrees in which it was observed. FGF5 is an oncogenic factor in several human cancers, and the mutation found here (W81C) changes the binding ability of heparan sulfate to FGF5, which might lead to its deregulation. These results support FGF5 as a potential NSNSCLC predisposition gene and present additional candidate predisposition variants.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Predisposición Genética a la Enfermedad , Genotipo , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/epidemiología , Neoplasias Pulmonares/genética , Mutación , Linaje , Factor 5 de Crecimiento de Fibroblastos
4.
Hum Genet ; 141(9): 1515-1528, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34862561

RESUMEN

Genetic data have become increasingly complex within the past decade, leading researchers to pursue increasingly complex questions, such as those involving epistatic interactions and protein prediction. Traditional methods are ill-suited to answer these questions, but machine learning (ML) techniques offer an alternative solution. ML algorithms are commonly used in genetics to predict or classify subjects, but some methods evaluate which features (variables) are responsible for creating a good prediction; this is called feature importance. This is critical in genetics, as researchers are often interested in which features (e.g., SNP genotype or environmental exposure) are responsible for a good prediction. This allows for the deeper analysis beyond simple prediction, including the determination of risk factors associated with a given phenotype. Feature importance further permits the researcher to peer inside the black box of many ML algorithms to see how they work and which features are critical in informing a good prediction. This review focuses on ML methods that provide feature importance metrics for the analysis of genetic data. Five major categories of ML algorithms: k nearest neighbors, artificial neural networks, deep learning, support vector machines, and random forests are described. The review ends with a discussion of how to choose the best machine for a data set. This review will be particularly useful for genetic researchers looking to use ML methods to answer questions beyond basic prediction and classification.


Asunto(s)
Aprendizaje Automático , Máquina de Vectores de Soporte , Algoritmos , Humanos , Redes Neurales de la Computación
5.
Genet Epidemiol ; 43(2): 189-206, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30537345

RESUMEN

We develop linear mixed models (LMMs) and functional linear mixed models (FLMMs) for gene-based tests of association between a quantitative trait and genetic variants on pedigrees. The effects of a major gene are modeled as a fixed effect, the contributions of polygenes are modeled as a random effect, and the correlations of pedigree members are modeled via inbreeding/kinship coefficients. F -statistics and χ 2 likelihood ratio test (LRT) statistics based on the LMMs and FLMMs are constructed to test for association. We show empirically that the F -distributed statistics provide a good control of the type I error rate. The F -test statistics of the LMMs have similar or higher power than the FLMMs, kernel-based famSKAT (family-based sequence kernel association test), and burden test famBT (family-based burden test). The F -statistics of the FLMMs perform well when analyzing a combination of rare and common variants. For small samples, the LRT statistics of the FLMMs control the type I error rate well at the nominal levels α = 0.01 and 0.05 . For moderate/large samples, the LRT statistics of the FLMMs control the type I error rates well. The LRT statistics of the LMMs can lead to inflated type I error rates. The proposed models are useful in whole genome and whole exome association studies of complex traits.


Asunto(s)
Estudios de Asociación Genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Modelos Genéticos , Carácter Cuantitativo Heredable , Simulación por Computador , Familia , Humanos , Modelos Lineales , Miopía/genética
6.
Hum Genet ; 138(4): 339-354, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30826882

RESUMEN

Myopia is one of the most common ocular disorders in the world, yet the genetic etiology of the disease remains poorly understood. Specialized founder populations, such as the Pennsylvania Amish, provide the opportunity to utilize exclusive genomic architecture, like unique haplotypes, to better understand the genetic causes of myopia. We perform genetic linkage analysis on Pennsylvania Amish families that have a strong familial history of myopia to map any potential causal variants and genes for the disease. 293 individuals from 25 extended families were genotyped on the Illumina ExomePlus array and merged with previous microsatellite data. We coded myopia affection as a binary phenotype; myopia was defined as having a mean spherical equivalent (MSE) of less than or equal to - 1 D (diopters). Two-point and multipoint parametric linkage analyses were performed under an autosomal dominant model. When allowing for locus heterogeneity, we identified two novel genome-wide significantly linked variants at 12q15 (heterogeneity LOD, HLOD = 3.77) in PTPRB and at 8q21.3 (HLOD = 3.35) in CNGB3. We identified further three genome-wide significant variants within a single family. These three variants were located in exons of SLC6A18 at 5p15.33 (LODs ranged from 3.51 to 3.37). Multipoint analysis confirmed the significant signal at 5p15.33 with six genome-wide significant variants (LODs ranged from 3.6 to 3.3). Further suggestive evidence of linkage was observed in several other regions of the genome. All three novel linked regions contain strong candidate genes, especially CNGB3 on 8q21.3, which has been shown to affect photoreceptors and cause complete color blindness. Whole genome sequencing on these regions is planned to conclusively elucidate the causal variants.


Asunto(s)
Amish/genética , Cromosomas Humanos Par 12 , Cromosomas Humanos Par 5 , Cromosomas Humanos Par 8 , Miopía/genética , Amish/estadística & datos numéricos , Niño , Preescolar , Familia , Femenino , Frecuencia de los Genes , Ligamiento Genético , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Miopía/etnología , Pennsylvania/epidemiología , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
7.
Am J Hum Genet ; 99(4): 877-885, 2016 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-27666373

RESUMEN

The vast majority of coding variants are rare, and assessment of the contribution of rare variants to complex traits is hampered by low statistical power and limited functional data. Improved methods for predicting the pathogenicity of rare coding variants are needed to facilitate the discovery of disease variants from exome sequencing studies. We developed REVEL (rare exome variant ensemble learner), an ensemble method for predicting the pathogenicity of missense variants on the basis of individual tools: MutPred, FATHMM, VEST, PolyPhen, SIFT, PROVEAN, MutationAssessor, MutationTaster, LRT, GERP, SiPhy, phyloP, and phastCons. REVEL was trained with recently discovered pathogenic and rare neutral missense variants, excluding those previously used to train its constituent tools. When applied to two independent test sets, REVEL had the best overall performance (p < 10-12) as compared to any individual tool and seven ensemble methods: MetaSVM, MetaLR, KGGSeq, Condel, CADD, DANN, and Eigen. Importantly, REVEL also had the best performance for distinguishing pathogenic from rare neutral variants with allele frequencies <0.5%. The area under the receiver operating characteristic curve (AUC) for REVEL was 0.046-0.182 higher in an independent test set of 935 recent SwissVar disease variants and 123,935 putatively neutral exome sequencing variants and 0.027-0.143 higher in an independent test set of 1,953 pathogenic and 2,406 benign variants recently reported in ClinVar than the AUCs for other ensemble methods. We provide pre-computed REVEL scores for all possible human missense variants to facilitate the identification of pathogenic variants in the sea of rare variants discovered as sequencing studies expand in scale.


Asunto(s)
Enfermedad/genética , Mutación Missense/genética , Programas Informáticos , Área Bajo la Curva , Análisis Mutacional de ADN , Exoma/genética , Frecuencia de los Genes , Humanos , Curva ROC
8.
BMC Med Genet ; 20(1): 27, 2019 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-30704416

RESUMEN

BACKGROUND: Myopia is one of most common eye diseases in the world and affects 1 in 4 Americans. It is a complex disease caused by both environmental and genetics effects; the genetics effects are still not well understood. In this study, we performed genetic linkage analyses on Ashkenazi Jewish families with a strong familial history of myopia to elucidate any potential causal genes. METHODS: Sixty-four extended Ashkenazi Jewish families were previously collected from New Jersey. Genotypes from the Illumina ExomePlus array were merged with prior microsatellite linkage data from these families. Additional custom markers were added for candidate regions reported in literature for myopia or refractive error. Myopia was defined as mean spherical equivalent (MSE) of -1D or worse and parametric two-point linkage analyses (using TwoPointLods) and multi-point linkage analyses (using SimWalk2) were performed as well as collapsed haplotype pattern (CHP) analysis in SEQLinkage and association analyses performed with FBAT and rv-TDT. RESULTS: Strongest evidence of linkage was on 1p36(two-point LOD = 4.47) a region previously linked to refractive error (MYP14) but not myopia. Another genome-wide significant locus was found on 8q24.22 with a maximum two-point LOD score of 3.75. CHP analysis also detected the signal on 1p36, localized to the LINC00339 gene with a maximum HLOD of 3.47, as well as genome-wide significant signals on 7q36.1 and 11p15, which overlaps with the MYP7 locus. CONCLUSIONS: We identified 2 novel linkage peaks for myopia on chromosomes 7 and 8 in these Ashkenazi Jewish families and replicated 2 more loci on chromosomes 1 and 11, one previously reported in refractive error but not myopia in these families and the other locus previously reported in the literature. Strong candidate genes have been identified within these linkage peaks in our families. Targeted sequencing in these regions will be necessary to definitively identify causal variants under these linkage peaks.


Asunto(s)
Cromosomas Humanos/genética , Técnicas de Genotipaje/métodos , Judíos/genética , Miopía/genética , Cromosomas Humanos Par 1/genética , Cromosomas Humanos Par 11/genética , Cromosomas Humanos Par 7/genética , Cromosomas Humanos Par 8/genética , Exoma , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Escala de Lod , Masculino , Miopía/etnología , Linaje , ARN Largo no Codificante/genética
9.
Mol Vis ; 24: 29-42, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29383007

RESUMEN

Purpose: To determine genetic linkage between myopia and Han Chinese patients with a family history of the disease. Methods: One hundred seventy-six Han Chinese patients from 34 extended families were given eye examinations, and mean spherical equivalent (MSE) in diopters (D) was calculated by adding the spherical component of the refraction to one-half the cylindrical component and taking the average of both eyes. The MSE was converted to a binary phenotype, where all patients with an MSE of -1.00 D or less were coded as affected. Unaffected individuals had an MSE greater than 0.00 D (ages 21 years and up), +1.50 (ages 11-20), or +2.00 D (ages 6-10 years). Individuals between the given upper threshold and -1.00 were coded as unknown. Patients were genotyped on an exome chip. Three types of linkage analyses were performed: single-variant two-point, multipoint, and collapsed haplotype pattern (CHP) variant two-point. Results: The CHP variant two-point results identified a significant peak (heterogeneity logarithm of the odds [HLOD] = 3.73) at 10q26.13 in TACC2. The single-variant two-point and multipoint analyses showed highly suggestive linkage to the same region. The single-variant two-point results identified 25 suggestive variants at HTRA1, also at 10q26.13. Conclusions: We report a significant genetic linkage between myopia and Han Chinese patients at 10q26.13. 10q26.13 contains several good candidate genes, such as TACC2 and the known age-related macular degeneration gene HTRA1. Targeted sequencing of the region is planned to identify the causal variant(s).


Asunto(s)
Cromosomas Humanos Par 10/química , Ligamiento Genético , Sitios Genéticos , Predisposición Genética a la Enfermedad , Miopía/genética , Adulto , Anciano , Pueblo Asiatico , Proteínas Portadoras/genética , Niño , Familia , Femenino , Haplotipos , Serina Peptidasa A1 que Requiere Temperaturas Altas/genética , Humanos , Masculino , Miopía/diagnóstico , Miopía/etnología , Miopía/patología , Estudios Retrospectivos , Proteínas Supresoras de Tumor/genética
10.
Hum Hered ; 82(1-2): 64-74, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28817824

RESUMEN

OBJECTIVE: One of four American cancer patients dies of lung cancer. Environmental factors such as tobacco smoking are known to affect lung cancer risk. However, there is a genetic factor to lung cancer risk as well. Here, we perform parametric linkage analysis on family-based genotype data in an effort to find genetic loci linked to the disease. METHODS: 197 individuals from families with a high-risk history of lung cancer were recruited and genotyped using an Illumina array. Parametric linkage analyses were performed using an affected-only phenotype model with an autosomal dominant inheritance using a disease allele frequency of 0.01. Three types of analyses were performed: single variant two-point, collapsed haplotype pattern variant two-point, and multipoint analysis. RESULTS: Five novel genome-wide significant loci were identified at 18p11.23, 2p22.2, 14q13.1, 16p13, and 20q13.11. The families most informative for linkage were also determined. CONCLUSIONS: The 5 novel signals are good candidate regions, containing genes that have been implicated as having somatic changes in lung cancer or other cancers (though not in germ line cells). Targeted sequencing on the significant loci is planned to determine the causal variants at these loci.

11.
Stat Appl Genet Mol Biol ; 12(2): 241-61, 2013 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-23502345

RESUMEN

Knowledge of genes influencing longitudinal patterns may offer information about predicting disease progression. We developed a systematic procedure for testing association between SNP genotypes and longitudinal phenotypes. We evaluated false positive rates and statistical power to localize genes for disease progression. We used genome-wide SNP data from the Framingham Heart Study. With longitudinal data from two real studies unrelated to Framingham, we estimated three trajectory curves from each study. We performed simulations by randomly selecting 500 individuals. In each simulation replicate, we assigned each individual to one of the three trajectory groups based on the underlying hypothesis (null or alternative), and generated corresponding longitudinal data. Individual Bayesian posterior probabilities (BPPs) for belonging to a specific trajectory curve were estimated. These BPPs were treated as a quantitative trait and tested (using the Wald test) for genome-wide association. Empirical false positive rates and power were calculated. Our method maintained the expected false positive rate for all simulation models. Also, our method achieved high empirical power for most simulations. Our work presents a method for disease progression gene mapping. This method is potentially clinically significant as it may allow doctors to predict disease progression based on genotype and determine treatment accordingly.


Asunto(s)
Estudio de Asociación del Genoma Completo , Genotipo , Modelos Genéticos , Modelos Estadísticos , Fenotipo , Algoritmos , Animales , Mapeo Cromosómico/métodos , Simulación por Computador , Humanos , Masculino , Ratones , Penetrancia , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
12.
Sci Rep ; 14(1): 8533, 2024 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609424

RESUMEN

Craniosynostosis (CS) is a major birth defect resulting from premature fusion of cranial sutures. Nonsyndromic CS occurs more frequently than syndromic CS, with sagittal nonsyndromic craniosynostosis (sNCS) presenting as the most common CS phenotype. Previous genome-wide association and targeted sequencing analyses of sNCS have identified multiple associated loci, with the strongest association on chromosome 20. Herein, we report the first whole-genome sequencing study of sNCS using 63 proband-parent trios. Sequencing data for these trios were analyzed using the transmission disequilibrium test (TDT) and rare variant TDT (rvTDT) to identify high-risk rare gene variants. Sequencing data were also examined for copy number variants (CNVs) and de novo variants. TDT analysis identified a highly significant locus at 20p12.3, localized to the intergenic region between BMP2 and the noncoding RNA gene LINC01428. Three variants (rs6054763, rs6054764, rs932517) were identified as potential causal variants due to their probability of being transcription factor binding sites, deleterious combined annotation dependent depletion scores, and high minor allele enrichment in probands. Morphometric analysis of cranial vault shape in an unaffected cohort validated the effect of these three single nucleotide variants (SNVs) on dolichocephaly. No genome-wide significant rare variants, de novo loci, or CNVs were identified. Future efforts to identify risk variants for sNCS should include sequencing of larger and more diverse population samples and increased omics analyses, such as RNA-seq and ATAC-seq.


Asunto(s)
Craneosinostosis , Estudio de Asociación del Genoma Completo , Humanos , Alelos , Proteína Morfogenética Ósea 2/genética , Craneosinostosis/genética , ADN Intergénico/genética , Secuenciación Completa del Genoma , ARN Largo no Codificante
13.
Hum Hered ; 74(3-4): 172-83, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23594495

RESUMEN

As with any new technology, next-generation sequencing (NGS) has potential advantages and potential challenges. One advantage is the identification of multiple causal variants for disease that might otherwise be missed by SNP-chip technology. One potential challenge is misclassification error (as with any emerging technology) and the issue of power loss due to multiple testing. Here, we develop an extension of the linear trend test for association that incorporates differential misclassification error and may be applied to any number of SNPs. We call the statistic the linear trend test allowing for error, applied to NGS, or LTTae,NGS. This statistic allows for differential misclassification. The observed data are phenotypes for unrelated cases and controls, coverage, and the number of putative causal variants for every individual at all SNPs. We simulate data considering multiple factors (disease mode of inheritance, genotype relative risk, causal variant frequency, sequence error rate in cases, sequence error rate in controls, number of loci, and others) and evaluate type I error rate and power for each vector of factor settings. We compare our results with two recently published NGS statistics. Also, we create a fictitious disease model based on downloaded 1000 Genomes data for 5 SNPs and 388 individuals, and apply our statistic to those data. We find that the LTTae,NGS maintains the correct type I error rate in all simulations (differential and non-differential error), while the other statistics show large inflation in type I error for lower coverage. Power for all three methods is approximately the same for all three statistics in the presence of non-differential error. Application of our statistic to the 1000 Genomes data suggests that, for the data downloaded, there is a 1.5% sequence misclassification rate over all SNPs. Finally, application of the multi-variant form of LTTae,NGS shows high power for a number of simulation settings, although it can have lower power than the corresponding single-variant simulation results, most probably due to our specification of multi-variant SNP correlation values. In conclusion, our LTTae,NGS addresses two key challenges with NGS disease studies; first, it allows for differential misclassification when computing the statistic; and second, it addresses the multiple-testing issue in that there is a multi-variant form of the statistic that has only one degree of freedom, and provides a single p value, no matter how many loci.


Asunto(s)
Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Modelos Genéticos , Modelos Estadísticos , Polimorfismo de Nucleótido Simple , Simulación por Computador , Humanos , Proyectos de Investigación , Análisis de Secuencia de ADN
14.
J Neurosurg ; 139(1): 266-274, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-36433874

RESUMEN

OBJECTIVE: Inherited variants predisposing patients to type 1 or 1.5 Chiari malformation (CM) have been hypothesized but have proven difficult to confirm. The authors used a unique high-risk pedigree population resource and approach to identify rare candidate variants that likely predispose individuals to CM and protein structure prediction tools to identify pathogenicity mechanisms. METHODS: By using the Utah Population Database, the authors identified pedigrees with significantly increased numbers of members with CM diagnosis. From a separate DNA biorepository of 451 samples from CM patients and families, 32 CM patients belonging to 1 or more of 24 high-risk Chiari pedigrees were identified. Two high-risk pedigrees had 3 CM-affected relatives, and 22 pedigrees had 2 CM-affected relatives. To identify rare candidate predisposition gene variants, whole-exome sequence data from these 32 CM patients belonging to 24 CM-affected related pairs from high-risk pedigrees were analyzed. The I-TASSER package for protein structure prediction was used to predict the structures of both the wild-type and mutant proteins found here. RESULTS: Sequence analysis of the 24 affected relative pairs identified 38 rare candidate Chiari predisposition gene variants that were shared by at least 1 CM-affected pair from a high-risk pedigree. The authors found a candidate variant in HOXC4 that was shared by 2 CM-affected patients in 2 independent pedigrees. All 4 of these CM cases, 2 in each pedigree, exhibited a specific craniocervical bony phenotype defined by a clivoaxial angle less than 125°. The protein structure prediction results suggested that the mutation considered here may reduce the binding affinity of HOXC4 to DNA. CONCLUSIONS: Analysis of unique and powerful Utah genetic resources allowed identification of 38 strong candidate CM predisposition gene variants. These variants should be pursued in independent populations. One of the candidates, a rare HOXC4 variant, was identified in 2 high-risk CM pedigrees, with this variant possibly predisposing patients to a Chiari phenotype with craniocervical kyphosis.


Asunto(s)
Encéfalo , Predisposición Genética a la Enfermedad , Proteínas de Homeodominio , Humanos , Predisposición Genética a la Enfermedad/genética , Genotipo , Proteínas de Homeodominio/genética , Mutación , Linaje , Fenotipo , Factores de Riesgo , Encéfalo/anomalías
15.
Nat Commun ; 14(1): 7436, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37973980

RESUMEN

The cranial vault in humans is highly variable, clinically relevant, and heritable, yet its genetic architecture remains poorly understood. Here, we conduct a joint multi-ancestry and admixed multivariate genome-wide association study on 3D cranial vault shape extracted from magnetic resonance images of 6772 children from the ABCD study cohort yielding 30 genome-wide significant loci. Follow-up analyses indicate that these loci overlap with genomic risk loci for sagittal craniosynostosis, show elevated activity cranial neural crest cells, are enriched for processes related to skeletal development, and are shared with the face and brain. We present supporting evidence of regional localization for several of the identified genes based on expression patterns in the cranial vault bones of E15.5 mice. Overall, our study provides a comprehensive overview of the genetics underlying normal-range cranial vault shape and its relevance for understanding modern human craniofacial diversity and the etiology of congenital malformations.


Asunto(s)
Craneosinostosis , Estudio de Asociación del Genoma Completo , Niño , Humanos , Animales , Ratones , Cráneo/diagnóstico por imagen , Craneosinostosis/genética , Huesos Faciales , Encéfalo/diagnóstico por imagen
16.
Commun Biol ; 6(1): 6, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36596879

RESUMEN

Refractive error, measured here as mean spherical equivalent (SER), is a complex eye condition caused by both genetic and environmental factors. Individuals with strong positive or negative values of SER require spectacles or other approaches for vision correction. Common genetic risk factors have been identified by genome-wide association studies (GWAS), but a great part of the refractive error heritability is still missing. Some of this heritability may be explained by rare variants (minor allele frequency [MAF] ≤ 0.01.). We performed multiple gene-based association tests of mean Spherical Equivalent with rare variants in exome array data from the Consortium for Refractive Error and Myopia (CREAM). The dataset consisted of over 27,000 total subjects from five cohorts of Indo-European and Eastern Asian ethnicity. We identified 129 unique genes associated with refractive error, many of which were replicated in multiple cohorts. Our best novel candidates included the retina expressed PDCD6IP, the circadian rhythm gene PER3, and P4HTM, which affects eye morphology. Future work will include functional studies and validation. Identification of genes contributing to refractive error and future understanding of their function may lead to better treatment and prevention of refractive errors, which themselves are important risk factors for various blinding conditions.


Asunto(s)
Miopía , Errores de Refracción , Humanos , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Miopía/genética , Errores de Refracción/genética , Población Blanca , Pueblos del Este de Asia
17.
BMC Res Notes ; 15(1): 190, 2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35655316

RESUMEN

OBJECTIVE: Although linkage studies have been utilized for the identification of variants associated with cancer in the world, little is known about their role in non BRCA1/2 individuals in the Sri Lankans. Hence we performed linkage analysis to identify susceptibility loci related to the inherited risk of cancer in a cohort of Sri Lankans affected with hereditary breast cancer. The Illumina global screening array having 654,027 single nucleotide polymorphism markers was performed in four families, in which at least three individuals within third degree relatives were affected by breast cancer. Two-point parametric linkage analysis was conducted assuming disease allele frequency of 1%. Penetrance was set at 90% for carriers with a 10% phenocopy rate. RESULTS: Thirty-one variants exhibited genome-wide suggestive HLODs. The top overall HLOD score was at rs1856277, an intronic variant in MYO16 on chromosome 13. The two most informative families also suggested several candidate linked loci in genes, including ERAP1, RPRM, WWOX, CDH1, EXOC1, HUS1B, STIM1 and TUSC1. This study provides the first step in identifying germline variants that may be involved in risk of cancer in cancer-aggregated non-BRCA1/2 families from the understudied Sri Lankan population. Several candidate linked regions showed suggestive evidence of linkage to cancer risk.


Asunto(s)
Neoplasias de la Mama , Aminopeptidasas , Neoplasias de la Mama/genética , Proteínas de Ciclo Celular , Estudios de Cohortes , Familia , Femenino , Ligamiento Genético , Humanos , Antígenos de Histocompatibilidad Menor , Sri Lanka/epidemiología , Proteínas Supresoras de Tumor
18.
Genes (Basel) ; 13(5)2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35627201

RESUMEN

Craniosynostosis (CS) is a major birth defect in which one or more skull sutures fuse prematurely. We previously performed a genome-wide association study (GWAS) for sagittal non-syndromic CS (sNCS), identifying associations downstream from BMP2 on 20p12.3 and intronic to BBS9 on 7p14.3; analyses of imputed variants in DLG1 on 3q29 were also genome-wide significant. We followed this work with a GWAS for metopic non-syndromic NCS (mNCS), discovering a significant association intronic to BMP7 on 20q13.31. In the current study, we sequenced the associated regions on 3q29, 7p14.3, and 20p12.3, including two candidate genes (BMP2 and BMPER) near some of these regions in 83 sNCS child-parent trios, and sequenced regions on 7p14.3 and 20q13.2-q13.32 in 80 mNCS child-parent trios. These child-parent trios were selected from the original GWAS cohorts if the probands carried at least one copy of the top associated GWAS variant (rs1884302 C allele for sNCS; rs6127972 T allele for mNCS). Many of the variants sequenced in these targeted regions are strongly predicted to be within binding sites for transcription factors involved in craniofacial development or bone morphogenesis. Variants enriched in more than one trio and predicted to be damaging to gene function are prioritized for functional studies.


Asunto(s)
Craneosinostosis , Estudio de Asociación del Genoma Completo , Alelos , Proteínas Portadoras/genética , Craneosinostosis/genética , Humanos
19.
Genes (Basel) ; 13(9)2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36140816

RESUMEN

Ulnar-mammary syndrome (UMS) is a rare, autosomal dominant disorder characterized by anomalies affecting the limbs, apocrine glands, dentition, and genital development. This syndrome is caused by haploinsufficiency in the T-Box3 gene (TBX3), with considerable variability in the clinical phenotype being observed even within families. We describe a one-year-old female with unilateral, postaxial polydactyly, and bilateral fifth fingernail duplication. Next-generation sequencing revealed a novel, likely pathogenic, variant predicted to affect the canonical splice site in intron 3 of the TBX3 gene (c.804 + 1G > A, IVS3 + 1G > A). This variant was inherited from the proband's father who was also diagnosed with UMS with the additional clinical finding of congenital, sagittal craniosynostosis. Subsequent whole genome analysis in the proband's father detected a variant in the EFNA4 gene (c.178C > T, p.His60Tyr), which has only been reported to be associated with sagittal craniosynostosis in one patient prior to this report but reported in other cranial suture synostosis. The findings in this family extend the genotypic spectrum of UMS, as well as the phenotypic spectrum of EFNA4-related craniosynostosis.


Asunto(s)
Anomalías Múltiples , Enfermedades de la Mama , Craneosinostosis , Anomalías Múltiples/genética , Enfermedades de la Mama/genética , Craneosinostosis/genética , Femenino , Humanos , Proteínas de Dominio T Box/genética , Cúbito/anomalías
20.
PLoS One ; 17(9): e0272379, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36137074

RESUMEN

PURPOSE: Genetic variants identified through population-based genome-wide studies are generally of high frequency, exerting their action in the central part of the refractive error spectrum. However, the power to identify associations with variants of lower minor allele frequency is greatly reduced, requiring considerable sample sizes. Here we aim to assess the impact of rare variants on genetic variation of refractive errors in a very large general population cohort. METHODS: Genetic association analyses of non-cyclopaedic autorefraction calculated as mean spherical equivalent (SPHE) used whole-exome sequence genotypic information from 50,893 unrelated participants in the UK Biobank of European ancestry. Gene-based analyses tested for association with SPHE using an optimised SNP-set kernel association test (SKAT-O) restricted to rare variants (minor allele frequency < 1%) within protein-coding regions of the genome. All models were adjusted for age, sex and common lead variants within the same locus reported by previous genome-wide association studies. Potentially causal markers driving association at significant loci were elucidated using sensitivity analyses by sequentially dropping the most associated variants from gene-based analyses. RESULTS: We found strong statistical evidence for association of SPHE with the SIX6 (p-value = 2.15 x 10-10, or Bonferroni-Corrected p = 4.41x10-06) and the CRX gene (p-value = 6.65 x 10-08, or Bonferroni-Corrected p = 0.001). The SIX6 gene codes for a transcription factor believed to be critical to the eye, retina and optic disc development and morphology, while CRX regulates photoreceptor specification and expression of over 700 genes in the retina. These novel associations suggest an important role of genes involved in eye morphogenesis in refractive error. CONCLUSION: The results of our study support previous research highlighting the importance of rare variants to the genetic risk of refractive error. We explain some of the origins of the genetic signals seen in GWAS but also report for the first time a completely novel association with the CRX gene.


Asunto(s)
Estudio de Asociación del Genoma Completo , Errores de Refracción , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Humanos , Polimorfismo de Nucleótido Simple , Errores de Refracción/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA