Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Cell ; 186(1): 17-31, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36608652

RESUMEN

Increasing antimicrobial resistance rates have revitalized bacteriophage (phage) research, the natural predators of bacteria discovered over 100 years ago. In order to use phages therapeutically, they should (1) preferably be lytic, (2) kill the bacterial host efficiently, and (3) be fully characterized to exclude side effects. Developing therapeutic phages takes a coordinated effort of multiple stakeholders. Herein, we review the state of the art in phage therapy, covering biological mechanisms, clinical applications, remaining challenges, and future directions involving naturally occurring and genetically modified or synthetic phages.


Asunto(s)
Bacteriófagos , Terapia de Fagos , Bacterias
2.
PLoS Biol ; 21(12): e3002416, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38048319

RESUMEN

Phages are one of the key ecological drivers of microbial community dynamics, function, and evolution. Despite their importance in bacterial ecology and evolutionary processes, phage genes are poorly characterized, hampering their usage in a variety of biotechnological applications. Methods to characterize such genes, even those critical to the phage life cycle, are labor intensive and are generally phage specific. Here, we develop a systematic gene essentiality mapping method scalable to new phage-host combinations that facilitate the identification of nonessential genes. As a proof of concept, we use an arrayed genome-wide CRISPR interference (CRISPRi) assay to map gene essentiality landscape in the canonical coliphages λ and P1. Results from a single panel of CRISPRi probes largely recapitulate the essential gene roster determined from decades of genetic analysis for lambda and provide new insights into essential and nonessential loci in P1. We present evidence of how CRISPRi polarity can lead to false positive gene essentiality assignments and recommend caution towards interpreting CRISPRi data on gene essentiality when applied to less studied phages. Finally, we show that we can engineer phages by inserting DNA barcodes into newly identified inessential regions, which will empower processes of identification, quantification, and tracking of phages in diverse applications.


Asunto(s)
Bacteriófagos , Bacteriófagos/genética , ADN , Genes Esenciales/genética
3.
Nat Chem Biol ; 19(6): 759-766, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36805702

RESUMEN

Single-strand RNA (ssRNA) Fiersviridae phages cause host lysis with a product of single gene (sgl for single-gene lysis; product Sgl) that induces autolysis. Many different Sgls have been discovered, but the molecular targets of only a few have been identified. In this study, we used a high-throughput genetic screen to uncover genome-wide host suppressors of diverse Sgls. In addition to validating known molecular mechanisms, we discovered that the Sgl of PP7, an ssRNA phage of Pseudomonas aeruginosa, targets MurJ, the flippase responsible for lipid II export, previously shown to be the target of the Sgl of coliphage M. These two Sgls, which are unrelated and predicted to have opposite membrane topology, thus represent a case of convergent evolution. We extended the genetic screens to other uncharacterized Sgls and uncovered a common set of multicopy suppressors, suggesting that these Sgls act by the same or similar mechanism.


Asunto(s)
Bacteriófagos , Genes Virales , Pseudomonas aeruginosa , Bacteriófagos/genética , Pseudomonas aeruginosa/virología , Evolución Biológica
4.
PLoS Biol ; 18(10): e3000877, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33048924

RESUMEN

Bacteriophages (phages) are critical players in the dynamics and function of microbial communities and drive processes as diverse as global biogeochemical cycles and human health. Phages tend to be predators finely tuned to attack specific hosts, even down to the strain level, which in turn defend themselves using an array of mechanisms. However, to date, efforts to rapidly and comprehensively identify bacterial host factors important in phage infection and resistance have yet to be fully realized. Here, we globally map the host genetic determinants involved in resistance to 14 phylogenetically diverse double-stranded DNA phages using two model Escherichia coli strains (K-12 and BL21) with known sequence divergence to demonstrate strain-specific differences. Using genome-wide loss-of-function and gain-of-function genetic technologies, we are able to confirm previously described phage receptors as well as uncover a number of previously unknown host factors that confer resistance to one or more of these phages. We uncover differences in resistance factors that strongly align with the susceptibility of K-12 and BL21 to specific phage. We also identify both phage-specific mechanisms, such as the unexpected role of cyclic-di-GMP in host sensitivity to phage N4, and more generic defenses, such as the overproduction of colanic acid capsular polysaccharide that defends against a wide array of phages. Our results indicate that host responses to phages can occur via diverse cellular mechanisms. Our systematic and high-throughput genetic workflow to characterize phage-host interaction determinants can be extended to diverse bacteria to generate datasets that allow predictive models of how phage-mediated selection will shape bacterial phenotype and evolution. The results of this study and future efforts to map the phage resistance landscape will lead to new insights into the coevolution of hosts and their phage, which can ultimately be used to design better phage therapeutic treatments and tools for precision microbiome engineering.


Asunto(s)
Bacteriófagos/fisiología , Escherichia coli/virología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteriófagos/efectos de los fármacos , Vías Biosintéticas/efectos de los fármacos , Sistemas CRISPR-Cas/genética , GMP Cíclico/análogos & derivados , GMP Cíclico/farmacología , ADN/genética , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Genes Esenciales , Genoma Bacteriano , Mutación/genética , Fenotipo , Reproducibilidad de los Resultados , Supresión Genética
5.
Microbiology (Reading) ; 167(12)2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34910616

RESUMEN

Though bacteriophages (phages) are known to play a crucial role in bacterial fitness and virulence, our knowledge about the genetic basis of their interaction, cross-resistance and host-range is sparse. Here, we employed genome-wide screens in Salmonella enterica serovar Typhimurium to discover host determinants involved in resistance to eleven diverse lytic phages including four new phages isolated from a therapeutic phage cocktail. We uncovered 301 diverse host factors essential in phage infection, many of which are shared between multiple phages demonstrating potential cross-resistance mechanisms. We validate many of these novel findings and uncover the intricate interplay between RpoS, the virulence-associated general stress response sigma factor and RpoN, the nitrogen starvation sigma factor in phage cross-resistance. Finally, the infectivity pattern of eleven phages across a panel of 23 genome sequenced Salmonella strains indicates that additional constraints and interactions beyond the host factors uncovered here define the phage host range.


Asunto(s)
Bacteriófagos , Fagos de Salmonella , Bacteriófagos/genética , Especificidad del Huésped/genética , Fagos de Salmonella/genética , Salmonella typhimurium/genética , Virulencia
6.
Nat Methods ; 10(4): 354-60, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23474465

RESUMEN

An inability to reliably predict quantitative behaviors for novel combinations of genetic elements limits the rational engineering of biological systems. We developed an expression cassette architecture for genetic elements controlling transcription and translation initiation in Escherichia coli: transcription elements encode a common mRNA start, and translation elements use an overlapping genetic motif found in many natural systems. We engineered libraries of constitutive and repressor-regulated promoters along with translation initiation elements following these definitions. We measured activity distributions for each library and selected elements that collectively resulted in expression across a 1,000-fold observed dynamic range. We studied all combinations of curated elements, demonstrating that arbitrary genes are reliably expressed to within twofold relative target expression windows with ∼93% reliability. We expect the genetic element definitions validated here can be collectively expanded to create collections of public-domain standard biological parts that support reliable forward engineering of gene expression at genome scales.


Asunto(s)
Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Factores Procarióticos de Iniciación/metabolismo , Transcripción Genética , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Biblioteca de Genes , Ingeniería Genética , Genoma Bacteriano , Factores Procarióticos de Iniciación/genética , Regiones Promotoras Genéticas/genética , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
7.
Nat Methods ; 10(4): 347-53, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23474467

RESUMEN

The practice of engineering biology now depends on the ad hoc reuse of genetic elements whose precise activities vary across changing contexts. Methods are lacking for researchers to affordably coordinate the quantification and analysis of part performance across varied environments, as needed to identify, evaluate and improve problematic part types. We developed an easy-to-use analysis of variance (ANOVA) framework for quantifying the performance of genetic elements. For proof of concept, we assembled and analyzed combinations of prokaryotic transcription and translation initiation elements in Escherichia coli. We determined how estimation of part activity relates to the number of unique element combinations tested, and we show how to estimate expected ensemble-wide part activity from just one or two measurements. We propose a new statistic, biomolecular part 'quality', for tracking quantitative variation in part performance across changing contexts.


Asunto(s)
Bioingeniería/métodos , Escherichia coli/metabolismo , Factores de Iniciación de Péptidos/metabolismo , Animales , Proteínas Bacterianas , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Biblioteca de Genes , Iniciación de la Cadena Peptídica Traduccional , Factores Procarióticos de Iniciación/metabolismo , Transcripción Genética
8.
Proc Natl Acad Sci U S A ; 110(34): 14024-9, 2013 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-23924614

RESUMEN

The inability to predict heterologous gene expression levels precisely hinders our ability to engineer biological systems. Using well-characterized regulatory elements offers a potential solution only if such elements behave predictably when combined. We synthesized 12,563 combinations of common promoters and ribosome binding sites and simultaneously measured DNA, RNA, and protein levels from the entire library. Using a simple model, we found that RNA and protein expression were within twofold of expected levels 80% and 64% of the time, respectively. The large dataset allowed quantitation of global effects, such as translation rate on mRNA stability and mRNA secondary structure on translation rate. However, the worst 5% of constructs deviated from prediction by 13-fold on average, which could hinder large-scale genetic engineering projects. The ease and scale this of approach indicates that rather than relying on prediction or standardization, we can screen synthetic libraries for desired behavior.


Asunto(s)
Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Biblioteca de Genes , Ingeniería Genética/métodos , Modelos Genéticos , ARN Mensajero/genética , Biología de Sistemas/métodos , Clonación Molecular , Cartilla de ADN/genética , Escherichia coli/genética , Citometría de Flujo , Secuenciación de Nucleótidos de Alto Rendimiento , Regiones Promotoras Genéticas/genética , Elementos Reguladores de la Transcripción/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ribosomas/genética
9.
Nat Methods ; 9(11): 1088-94, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23023598

RESUMEN

Bacterial regulators of transcriptional elongation are versatile units for building custom genetic switches, as they control the expression of both coding and noncoding RNAs, act on multigene operons and can be predictably tethered into higher-order regulatory functions (a property called composability). Yet the less versatile bacterial regulators of translational initiation are substantially easier to engineer. To bypass this tradeoff, we have developed an adaptor that converts regulators of translational initiation into regulators of transcriptional elongation in Escherichia coli. We applied this adaptor to the construction of several transcriptional attenuators and activators, including a small molecule-triggered attenuator and a group of five mutually orthogonal riboregulators that we assembled into NOR gates of two, three or four RNA inputs. Continued application of our adaptor should produce large collections of transcriptional regulators whose inherent composability can facilitate the predictable engineering of complex synthetic circuits.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Transcripción Genética , Regiones no Traducidas 5'/genética , Secuencia de Bases , Escherichia coli/genética , Escherichia coli/metabolismo , Iniciación de la Cadena Peptídica Traduccional/fisiología , Señales de Clasificación de Proteína/fisiología , Biología Sintética/métodos , Elongación de la Transcripción Genética/efectos de los fármacos , Elongación de la Transcripción Genética/fisiología
10.
Nucleic Acids Res ; 41(9): 5139-48, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23511967

RESUMEN

The reliable forward engineering of genetic systems remains limited by the ad hoc reuse of many types of basic genetic elements. Although a few intrinsic prokaryotic transcription terminators are used routinely, termination efficiencies have not been studied systematically. Here, we developed and validated a genetic architecture that enables reliable measurement of termination efficiencies. We then assembled a collection of 61 natural and synthetic terminators that collectively encode termination efficiencies across an ∼800-fold dynamic range within Escherichia coli. We simulated co-transcriptional RNA folding dynamics to identify competing secondary structures that might interfere with terminator folding kinetics or impact termination activity. We found that structures extending beyond the core terminator stem are likely to increase terminator activity. By excluding terminators encoding such context-confounding elements, we were able to develop a linear sequence-function model that can be used to estimate termination efficiencies (r = 0.9, n = 31) better than models trained on all terminators (r = 0.67, n = 54). The resulting systematically measured collection of terminators should improve the engineering of synthetic genetic systems and also advance quantitative modeling of transcription termination.


Asunto(s)
Modelos Genéticos , Regiones Terminadoras Genéticas , Terminación de la Transcripción Genética , Escherichia coli/genética , Pliegue del ARN
11.
Nat Chem Biol ; 8(5): 447-54, 2012 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-22446835

RESUMEN

Our ability to routinely engineer genetic networks for applications is limited by the scarcity of highly specific and non-cross-reacting (orthogonal) gene regulators with predictable behavior. Though antisense RNAs are attractive contenders for this purpose, quantitative understanding of their specificity and sequence-function relationship sufficient for their design has been limited. Here, we use rationally designed variants of the RNA-IN-RNA-OUT antisense RNA-mediated translation system from the insertion sequence IS10 to quantify >500 RNA-RNA interactions in Escherichia coli and integrate the data set with sequence-activity modeling to identify the thermodynamic stability of the duplex and the seed region as the key determinants of specificity. Applying this model, we predict the performance of an additional ~2,600 antisense-regulator pairs, forecast the possibility of large families of orthogonal mutants, and forward engineer and experimentally validate two RNA pairs orthogonal to an existing group of five from the training data set. We discuss the potential use of these regulators in next-generation synthetic biology applications.


Asunto(s)
Biosíntesis de Proteínas , ARN sin Sentido/genética , Biología Sintética/métodos , Secuencia de Bases , Escherichia coli/genética , Datos de Secuencia Molecular , Mutagénesis Insercional , ARN/metabolismo
12.
Nucleic Acids Res ; 40(7): 2907-24, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22156164

RESUMEN

Predicting the location and strength of promoters from genomic sequence requires accurate sequenced-based promoter models. We present the first model of a full-length bacterial promoter, encompassing both upstream sequences (UP-elements) and core promoter modules, based on a set of 60 promoters dependent on σ(E), an alternative ECF-type σ factor. UP-element contribution, best described by the length and frequency of A- and T-tracts, in combination with a PWM-based core promoter model, accurately predicted promoter strength both in vivo and in vitro. This model also distinguished active from weak/inactive promoters. Systematic examination of promoter strength as a function of RNA polymerase (RNAP) concentration revealed that UP-element contribution varied with RNAP availability and that the σ(E) regulon is comprised of two promoter types, one of which is active only at high concentrations of RNAP. Distinct promoter types may be a general mechanism for increasing the regulatory capacity of the ECF group of alternative σ's. Our findings provide important insights into the sequence requirements for the strength and function of full-length promoters and establish guidelines for promoter prediction and for forward engineering promoters of specific strengths.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Regiones Promotoras Genéticas , Factor sigma/metabolismo , Composición de Base , Sitios de Unión , ARN Polimerasas Dirigidas por ADN/metabolismo , Modelos Genéticos , Transcripción Genética
13.
Nucleic Acids Res ; 40(12): 5775-86, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22383579

RESUMEN

Non-coding RNAs (ncRNAs) are versatile regulators in cellular networks. While most trans-acting ncRNAs possess well-defined mechanisms that can regulate transcription or translation, they generally lack the ability to directly sense cellular signals. In this work, we describe a set of design principles for fusing ncRNAs to RNA aptamers to engineer allosteric RNA fusion molecules that modulate the activity of ncRNAs in a ligand-inducible way in Escherichia coli. We apply these principles to ncRNA regulators that can regulate translation (IS10 ncRNA) and transcription (pT181 ncRNA), and demonstrate that our design strategy exhibits high modularity between the aptamer ligand-sensing motif and the ncRNA target-recognition motif, which allows us to reconfigure these two motifs to engineer orthogonally acting fusion molecules that respond to different ligands and regulate different targets in the same cell. Finally, we show that the same ncRNA fused with different sensing domains results in a sensory-level NOR gate that integrates multiple input signals to perform genetic logic. These ligand-sensing ncRNA regulators provide useful tools to modulate the activity of structurally related families of ncRNAs, and building upon the growing body of RNA synthetic biology, our ability to design aptamer-ncRNA fusion molecules offers new ways to engineer ligand-sensing regulatory circuits.


Asunto(s)
Aptámeros de Nucleótidos/química , Regulación de la Expresión Génica , Ingeniería Genética/métodos , ARN Pequeño no Traducido/química , Proteínas de la Cápside/metabolismo , Escherichia coli/genética , Ligandos , Mutación , Conformación de Ácido Nucleico , Biosíntesis de Proteínas , Transducción de Señal , Teofilina/metabolismo , Transcripción Genética
14.
Proc Natl Acad Sci U S A ; 108(21): 8617-22, 2011 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-21555549

RESUMEN

The widespread natural ability of RNA to sense small molecules and regulate genes has become an important tool for synthetic biology in applications as diverse as environmental sensing and metabolic engineering. Previous work in RNA synthetic biology has engineered RNA mechanisms that independently regulate multiple targets and integrate regulatory signals. However, intracellular regulatory networks built with these systems have required proteins to propagate regulatory signals. In this work, we remove this requirement and expand the RNA synthetic biology toolkit by engineering three unique features of the plasmid pT181 antisense-RNA-mediated transcription attenuation mechanism. First, because the antisense RNA mechanism relies on RNA-RNA interactions, we show how the specificity of the natural system can be engineered to create variants that independently regulate multiple targets in the same cell. Second, because the pT181 mechanism controls transcription, we show how independently acting variants can be configured in tandem to integrate regulatory signals and perform genetic logic. Finally, because both the input and output of the attenuator is RNA, we show how these variants can be configured to directly propagate RNA regulatory signals by constructing an RNA-meditated transcriptional cascade. The combination of these three features within a single RNA-based regulatory mechanism has the potential to simplify the design and construction of genetic networks by directly propagating signals as RNA molecules.


Asunto(s)
Regulación de la Expresión Génica , Redes Reguladoras de Genes/genética , Ingeniería Genética/métodos , ARN sin Sentido/genética , Biología Sintética/métodos , Transcripción Genética , ARN/genética , Transducción de Señal/genética , Factores de Transcripción
15.
Curr Opin Microbiol ; 82: 102555, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39388759

RESUMEN

With advancements in genomics technologies, a vast diversity of 'atypical' phages, that is, with single-stranded DNA or RNA genomes, are being uncovered from different ecosystems. Though these efforts have revealed the existence and prevalence of these nonmodel phages, computational approaches often fail to associate these phages with their specific bacterial host(s), while the lack of methods to isolate these phages has limited our ability to characterize infectivity pathways and new gene function. In this review, we call for the development of generalizable experimental methods to better capture this understudied viral diversity via isolation and study them through gene-level characterization and engineering. Establishing a diverse set of new 'atypical' phage model systems has the potential to provide many new biotechnologies, including potential uses of these atypical phages in halting the spread of antibiotic resistance and engineering of microbial communities for beneficial outcomes.

17.
Proc Natl Acad Sci U S A ; 107(7): 2854-9, 2010 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-20133665

RESUMEN

Sequenced bacterial genomes provide a wealth of information but little understanding of transcriptional regulatory circuits largely because accurate prediction of promoters is difficult. We examined two important issues for accurate promoter prediction: (1) the ability to predict promoter strength and (2) the sequence properties that distinguish between active and weak/inactive promoters. We addressed promoter prediction using natural core promoters recognized by the well-studied alternative sigma factor, Escherichia coli sigma(E), as a representative of group 4 sigmas, the largest sigma group. To evaluate the contribution of sequence to promoter strength and function, we used modular position weight matrix models comprised of each promoter motif and a penalty score for suboptimal motif location. We find that a combination of select modules is moderately predictive of promoter strength and that imposing minimal motif scores distinguished active from weak/inactive promoters. The combined -35/-10 score is the most important predictor of activity. Our models also identified key sequence features associated with active promoters. A conserved "AAC" motif in the -35 region is likely to be a general predictor of function for promoters recognized by group 4 sigmas. These results provide valuable insights into sequences that govern promoter strength, distinguish active and inactive promoters for the first time, and are applicable to both in vivo and in vitro measures of promoter strength.


Asunto(s)
Secuencias de Aminoácidos/genética , Escherichia coli/genética , Modelos Genéticos , Regiones Promotoras Genéticas/genética , Factor sigma/genética , Transcripción Genética/genética , Secuencia de Aminoácidos , Secuencia de Bases , Datos de Secuencia Molecular
18.
ISME Commun ; 3(1): 78, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37596312

RESUMEN

Lytic phages can be potent and selective inhibitors of microbial growth and can have profound impacts on microbiome composition and function. However, there is uncertainty about the biogeochemical conditions under which phage predation modulates microbial ecosystem function, particularly in terrestrial systems. Ionic strength is critical for infection of bacteria by many phages, but quantitative data is limited on the ion thresholds for phage infection that can be compared with environmental ion concentrations. Similarly, while carbon composition varies in the environment, we do not know how this variability influences the impact of phage predation on microbiome function. Here, we measured the half-maximal effective concentrations (EC50) of 80 different inorganic ions for the infection of E. coli with two canonical dsDNA and ssRNA phages, T4 and MS2, respectively. Many alkaline earth metals and alkali metals enabled lytic infection but the ionic strength thresholds varied for different ions between phages. Additionally, using a freshwater nitrate-reducing microbiome, we found that the ability of lytic phages to influence nitrate reduction end-products depended upon the carbon source as well as ionic strength. For all phage:host pairs, the ion EC50s for phage infection exceeded the ion concentrations found in many terrestrial freshwater systems. Thus, our findings support a model where phages most influence terrestrial microbial functional ecology in hot spots and hot moments such as metazoan guts, drought influenced soils, or biofilms where ion concentration is locally or transiently elevated and nutrients are available to support the growth of specific phage hosts.

19.
iScience ; 25(4): 104121, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35402883

RESUMEN

At its current rate, the rise of antimicrobial-resistant (AMR) infections is predicted to paralyze our industries and healthcare facilities while becoming the leading global cause of loss of human life. With limited new antibiotics on the horizon, we need to invest in alternative solutions. Bacteriophages (phages)-viruses targeting bacteria-offer a powerful alternative approach to tackle bacterial infections. Despite recent advances in using phages to treat recalcitrant AMR infections, the field lacks systematic development of phage therapies scalable to different applications. We propose a Phage Foundry framework to establish metrics for phage characterization and to fill the knowledge and technological gaps in phage therapeutics. Coordinated investment in AMR surveillance, sampling, characterization, and data sharing procedures will enable rational exploitation of phages for treatments. A fully realized Phage Foundry will enhance the sharing of knowledge, technology, and viral reagents in an equitable manner and will accelerate the biobased economy.

20.
Nat Microbiol ; 7(12): 1967-1979, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36316451

RESUMEN

CRISPR-Cas13 proteins are RNA-guided RNA nucleases that defend against incoming RNA and DNA phages by binding to complementary target phage transcripts followed by general, non-specific RNA degradation. Here we analysed the defensive capabilities of LbuCas13a from Leptotrichia buccalis and found it to have robust antiviral activity unaffected by target phage gene essentiality, gene expression timing or target sequence location. Furthermore, we find LbuCas13a antiviral activity to be broadly effective against a wide range of phages by challenging LbuCas13a against nine E. coli phages from diverse phylogenetic groups. Leveraging the versatility and potency enabled by LbuCas13a targeting, we applied LbuCas13a towards broad-spectrum phage editing. Using a two-step phage-editing and enrichment method, we achieved seven markerless genome edits in three diverse phages with 100% efficiency, including edits as large as multi-gene deletions and as small as replacing a single codon. Cas13a can be applied as a generalizable tool for editing the most abundant and diverse biological entities on Earth.


Asunto(s)
Bacteriófagos , Edición Génica , Bacteriófagos/genética , Sistemas CRISPR-Cas , Escherichia coli/genética , Filogenia , ARN/genética , Antivirales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA