Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Environ Sci Technol ; 55(12): 7818-7830, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34019409

RESUMEN

During haze periods in the North China Plain, extremely high NO concentrations have been observed, commonly exceeding 1 ppbv, preventing the classical gas-phase H2O2 formation through HO2 recombination. Surprisingly, H2O2 mixing ratios of about 1 ppbv were observed repeatedly in winter 2017. Combined field observations and chamber experiments reveal a photochemical in-particle formation of H2O2, driven by transition metal ions (TMIs) and humic-like substances (HULIS). In chamber experiments, steady-state H2O2 mixing ratios of 116 ± 83 pptv were observed upon the irradiation of TMI- and HULIS-containing particles. Correspondingly, H2O2 formation rates of about 0.2 ppbv h-1 during the initial irradiation periods are consistent with the H2O2 rates observed in the field. A novel chemical mechanism was developed explaining the in-particle H2O2 formation through a sequence of elementary photochemical reactions involving HULIS and TMIs. Dedicated box model studies of measurement periods with relative humidity >50% and PM2.5 ≥ 75 µg m-3 agree with the observed H2O2 concentrations and time courses. The modeling results suggest about 90% of the particulate sulfate to be produced from the SO2 reaction with OH and HSO3- oxidation by H2O2. Overall, under high pollution, the H2O2-caused sulfate formation rate is above 250 ng m-3 h-1, contributing to the sulfate formation by more than 70%.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , China , Monitoreo del Ambiente , Sustancias Húmicas/análisis , Peróxido de Hidrógeno , Material Particulado/análisis , Sulfatos/análisis
2.
Environ Sci Technol ; 54(7): 3767-3782, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32157872

RESUMEN

Organosulfates (OSs), also referred to as organic sulfate esters, are well-known and ubiquitous constituents of atmospheric aerosol particles. Commonly, they are assumed to form upon mixing of air masses of biogenic and anthropogenic origin, that is, through multiphase reactions between organic compounds and acidic sulfate particles. However, in contrast to this simplified picture, recent studies suggest that OSs may also originate from purely anthropogenic precursors or even directly from biomass and fossil fuel burning. Moreover, besides classical OS formation pathways, several alternative routes have been discovered, suggesting that OS formation possibly occurs through a wider variety of formation mechanisms in the atmosphere than initially expected. During the past decade, OSs have reached a constantly growing attention within the atmospheric science community with evermore studies reporting on large numbers of OS species in ambient aerosol. Nonetheless, estimates on OS concentrations and implications on atmospheric physicochemical processes are still connected to large uncertainties, calling for combined field, laboratory, and modeling studies. In this Critical Review, we summarize the current state of knowledge in atmospheric OS research, discuss unresolved questions, and outline future research needs, also in view of reductions of anthropogenic sulfur dioxide (SO2) emissions. Particularly, we focus on (1) field measurements of OSs and measurement techniques, (2) formation pathways of OSs and their atmospheric relevance, (3) transformation, reactivity, and fate of OSs in atmospheric particles, and (4) modeling efforts of OS formation and their global abundance.


Asunto(s)
Atmósfera , Dióxido de Azufre , Aerosoles , Compuestos Orgánicos , Sulfatos
3.
Environ Sci Technol ; 49(13): 7754-61, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26011767

RESUMEN

Very recent studies have reported the existence of highly oxidized multifunctional organic compounds (HOMs) with O/C ratios greater than 0.7. Because of their low vapor pressure, these compounds are often referred as extremely low-volatile organic compounds (ELVOCs), and thus, they are able to contribute significantly to organic mass in tropospheric particles. While HOMs have been successfully detected in the gas phase, their fate after uptake into particles remains unclear to date. Hence, the present study was designed to detect HOMs and related oxidation products in the particle phase and, thus, to shed light on their fate after phase transfer. To this end, aerosol chamber investigations of α-pinene ozonolysis were conducted under near environmental precursor concentrations (2.4 ppb) in a continuous flow reactor. The chemical characterization shows three classes of particle constituents: (1) intact HOMs that contain a carbonyl group, (2) particle-phase decomposition products, and (3) highly oxidized organosulfates (suggested to be addressed as HOOS). Besides chamber studies, HOM formation was also investigated during a measurement campaign conducted in summer 2013 at the TROPOS research station Melpitz. During this field campaign, gas-phase HOM formation was found to be correlated with an increase in the oxidation state of the organic aerosol.


Asunto(s)
Atmósfera/química , Monoterpenos/química , Compuestos Orgánicos Volátiles/análisis , Aerosoles/química , Atmósfera/análisis , Monoterpenos Bicíclicos , Monitoreo del Ambiente/métodos , Oxidación-Reducción , Ozono/química , Compuestos Orgánicos Volátiles/química
4.
Environ Sci Technol ; 48(9): 4901-8, 2014 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-24697354

RESUMEN

An oxygenated MW 188 compound is commonly observed in substantial abundance in atmospheric aerosol samples and was proposed in previous studies as an α-pinene-related marker compound that is associated with aging processes. Owing to difficulties in producing this compound in sufficient amounts in laboratory studies and the occurrence of isobaric isomers, a complete assignment for individual MW 188 compounds could not be achieved in these studies. Results from a comprehensive mass spectrometric analysis are presented here to corroborate the proposed structure of the most abundant MW 188 compound as a 2-hydroxyterpenylic acid diastereoisomer with 2R,3R configuration. The application of collision-induced dissociation with liquid chromatography/electrospray ionization-ion trap mass spectrometry in both negative and positive ion modes, as well as chemical derivatization to methyl ester derivatives and analysis by the latter technique and gas chromatography/electron ionization mass spectrometry, enabled a comprehensive characterization of MW 188 isomers, including a detailed study of the fragmentation behavior using both mass spectrometric techniques. Furthermore, a MW 188 positional isomer, 4-hydroxyterpenylic acid, was tentatively identified, which also is of atmospheric relevance as it could be detected in ambient fine aerosol. Quantum chemical calculations were performed to support the diastereoisomeric assignment of the 2-hydroxyterpenylic acid isomers. Results from a time-resolved α-pinene photooxidation experiment show that the 2-hydroxyterpenylic acid 2R,3R diastereoisomer has a time profile distinctly different from that of 3-methyl-1,2,3-butanetricarboxylic acid, a marker for oxygenated (aged) secondary organic aerosol. This study presents a comprehensive chemical data set for a more complete structural characterization of hydroxyterpenylic acids in ambient fine aerosol, which sets the foundation to better understand the atmospheric fate of α-pinene in future studies.


Asunto(s)
4-Butirolactona/análogos & derivados , Acetatos/química , Monoterpenos/química , Oxígeno/química , 4-Butirolactona/química , Aerosoles , Contaminantes Atmosféricos/análisis , Monoterpenos Bicíclicos , Cromatografía Liquida , Cromatografía de Gases y Espectrometría de Masas , Peso Molecular , Monoterpenos/análisis , Espectrometría de Masa por Ionización de Electrospray , Estereoisomerismo
5.
Environ Sci Technol ; 47(8): 3639-47, 2013 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-23488636

RESUMEN

Acidic sulfate particles are known to enhance secondary organic aerosol (SOA) mass in the oxidation of biogenic volatile organic compounds (BVOCs) through accretion reactions and organosulfate formation. Enhanced phase transfer of epoxides, which form during the BVOC oxidation, into the acidified sulfate particles is shown to explain the latter process. We report here a newly identified ozone-driven SOA production chain that increases SOA formation dramatically. In this process, the epoxides interact with acidic sulfate particles, forming a new generation of highly reactive VOCs through isomerization. These VOCs partition back into the gas phase and undergo a new round of SOA forming oxidation reactions. Depending on the nature of the isomerized VOCs, their next generation oxidation forms highly oxygenated terpenoic acids or organosulfates. Atmospheric evidence is presented for the existence of marker compounds originating from this chain. The identified process partly explains the enhanced SOA formation in the presence of acidic particles on a molecular basis and could be an important source of missing SOA precursor VOCs that are currently not included in atmospheric models.


Asunto(s)
Aerosoles/análisis , Compuestos Orgánicos/análisis , Ozono/química , Ácidos , Atmósfera/química , Monoterpenos Bicíclicos , Catálisis , Cromatografía Líquida de Alta Presión , Cromatografía de Gases y Espectrometría de Masas , Gases/análisis , Isomerismo , Terpenos/análisis , Factores de Tiempo
6.
ACS Earth Space Chem ; 5(5): 1083-1093, 2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34084985

RESUMEN

Atmospheric nitrophenols are pollutants of concern due to their toxicity and light-absorption characteristics and their low reactivity resulting in relatively long residence times in the environment. We investigate multiphase nitrophenol formation from guaiacol in a simulated atmospheric aerosol and support observations with the corresponding chemical mechanisms. The maximal secondary organic aerosol (SOA) yield (42%) is obtained under illumination at 80% relative humidity. Among the identified nitrophenols, 4-nitrocatechol (3.6% yield) is the prevailing species in the particulate phase. The results point to the role of water in catechol and further 4-nitrocatechol formation from guaiacol. In addition, a new pathway of dark nitrophenol formation is suggested, which prevailed in dry air and roughly yielded 1% nitroguaiacols. Furthermore, the proposed mechanism possibly leads to oligomer formation via a phenoxy radical formation by oxidation with HONO.

7.
Atmos Chem Phys ; 17(3): 2103-2162, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-30147712

RESUMEN

Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO3) represents one of the important interactions between anthropogenic emissions related to combustion and natural emissions from the biosphere. This interaction has been recognized for more than 3 decades, during which time a large body of research has emerged from laboratory, field, and modeling studies. NO3-BVOC reactions influence air quality, climate and visibility through regional and global budgets for reactive nitrogen (particularly organic nitrates), ozone, and organic aerosol. Despite its long history of research and the significance of this topic in atmospheric chemistry, a number of important uncertainties remain. These include an incomplete understanding of the rates, mechanisms, and organic aerosol yields for NO3-BVOC reactions, lack of constraints on the role of heterogeneous oxidative processes associated with the NO3 radical, the difficulty of characterizing the spatial distributions of BVOC and NO3 within the poorly mixed nocturnal atmosphere, and the challenge of constructing appropriate boundary layer schemes and non-photochemical mechanisms for use in state-of-the-art chemical transport and chemistry-climate models. This review is the result of a workshop of the same title held at the Georgia Institute of Technology in June 2015. The first half of the review summarizes the current literature on NO3-BVOC chemistry, with a particular focus on recent advances in instrumentation and models, and in organic nitrate and secondary organic aerosol (SOA) formation chemistry. Building on this current understanding, the second half of the review outlines impacts of NO3-BVOC chemistry on air quality and climate, and suggests critical research needs to better constrain this interaction to improve the predictive capabilities of atmospheric models.

8.
Faraday Discuss ; 165: 261-72, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24601006

RESUMEN

In the present work, we have evaluated whether isomeric C5-alkene diols (1,2-dihydroxy-2-methyl-3-butene, 1,2-dihydroxy-3-methyl-3-butene, and 1,4-dihydroxy-2-methyl-2-butene (cis + trans)), which have first been detected upon photooxidation of isoprene in the absence of NO and are known to be formed in the ambient atmosphere, can serve as precursors for the 2-methyltetrols, C5-alkene triols, and 2-methylglyceric acid under low-NO(x) conditions. The C5-alkene diols were prepared following published synthesis procedures. It is shown that under the applied chamber conditions the isomeric C5-alkene diols give rise to 2-methyltetrols with different threo/erythro abundance ratios and that certain diols produce 2-methylglyceric acid, but that they do not form C5-alkene triols. Furthermore, it is shown that the photooxidation of isoprene under the applied chamber conditions employing photolysis of H2O2 under dry conditions yields relatively small amounts of C5-alkene triols compared to those of the 2-methyltetrols, unlike under ambient conditions. It is argued that the chamber conditions are not optimal for the formation of C5-epoxydiols, which serve as gas-phase precursors for the C5-alkene triols, and likely as in some previous studies favor the formation of C5-alkene diols as a result of RO2 + RO2 reactions.


Asunto(s)
Aerosoles/química , Alquenos/química , Butadienos/química , Hemiterpenos/química , Óxidos de Nitrógeno/química , Compuestos Orgánicos/química , Pentanos/química , Procesos Fotoquímicos , Oxidación-Reducción
9.
J Chromatogr B Analyt Technol Biomed Life Sci ; 879(17-18): 1402-11, 2011 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-21411383

RESUMEN

Two denuder sampling techniques have been compared for the analysis of gaseous carbonyl compounds. One type of denuder was coated with XAD-4 resin and the other type of denuder was coated with XAD-4 and 2,4-dinitrophenylhydrazine (DNPH) to derivatise gaseous carbonyl compounds to their hydrazone forms simultaneously. A detailed protocol for the denuder coating procedure is described. The collection efficiency under dry (RH <3%) and humid conditions (RH 50%) as well as filter positive artefacts were evaluated. The XAD-4/DNPH coated denuders showed significantly less break-through potential and hence collection than the XAD-4-only coated denuders. The performance of the XAD-4/DNPH denuder was better under humid conditions with no detected break-through for hydroxyacetone, methacrolein, methylglyoxal, campholenic aldehyde and nopinone. Calibration experiments were performed in a simulation chamber and carbonyl-hydrazone concentrations determined in the extracts of both the denuder types were related to the mixing ratios of gaseous carbonyl compounds in the chamber to overcome losses and errors associating with the denuder sampling, extraction and sample preparation. The application of on-tube conversion for the XAD-4/DNPH denuders resulted in higher R(2) values than the XAD-4 denuder, ranging up to 0.991 for nopinone. The XAD-4-only coated denuders showed acceptable calibration curves only for lower vapour pressure carbonyl compounds though larger relative standard deviations (RSD) were observed. Carbonyl compounds that were formed during the oxidation of nopinone were collected using the XAD-4/DNPH denuders. The results showed that the denuder sampling device was able to provide reproducible nopinone mixing ratios that remained in the chamber after about 1h of the oxidation. One isomer of oxo-nopinones was tentatively identified from off-line HPLC/(-)ESI-TOFMS analysis. Based on the TOFMS response of the nopinone-DNPH derivative, the oxo-nopinone molar yield of 0.7±0.1% (n=3) was determined from the reaction of nopinone with OH radicals. Depending on target analytes, accuracy and sensitivity requirements, the present method can be employed for the determination of gaseous carbonyl compounds that are formed during the oxidation of monoterpenes.


Asunto(s)
Contaminantes Atmosféricos/aislamiento & purificación , Gases/aislamiento & purificación , Compuestos Orgánicos/aislamiento & purificación , Fenilhidrazinas/química , Poliestirenos/química , Polivinilos/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Contaminantes Atmosféricos/análisis , Cromatografía Líquida de Alta Presión/métodos , Monitoreo del Ambiente/métodos , Gases/análisis , Compuestos Orgánicos/análisis , Volatilización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA